對于定義在區(qū)間D上的函數(shù)f(x),若滿足對?x1,x2∈D,且x1<x2時都有 f(x1)≥f(x2),則稱函數(shù)f(x)為區(qū)間D上的“非增函數(shù)”.若f(x)為區(qū)間[0,1]上的“非增函數(shù)”且f(0)=l,f(x)+f(l-x)=l,又當(dāng)x∈[0,
1
4
]時,f(x)≤-2x+1恒成立.有下列命題:
①?x∈[0,1],f(x)≥0;
②當(dāng)x1,x2∈[0,1]且x1≠x2,時,f(x1)≠f(x)
③f(
1
8
)+f(
5
11
)+f(
7
13
)+f(
7
8
)=2;
④當(dāng)x∈[0,
1
4
]時,f(f(x))≤f(x).
其中你認(rèn)為正確的所有命題的序號為______.
對于①,因?yàn)閒(0)=1,且f(x)+f(l-x)=l,取x=0,得f(1)=0,對?x∈[0,1],根據(jù)“非增函數(shù)”的定義知f(x)≥0.所以①正確;
對于②,由定義可知當(dāng)x1,x2∈[0,1]且x1≠x2時,f(x1)與f(x2)可能相等.所以②不正確;
③由f(x)+f(l-x)=l,得f(
1
8
)+f(
7
8
)=1.因?yàn)楫?dāng)x∈[0,
1
4
]時f(x)≤-2x+1恒成立,所以f(
1
4
)≤
1
2
,又f(x)+f(l-x)=l,所以f(
1
2
)=
1
2
,而
1
4
1
2
,所以f(
1
4
)≥
1
2
,即f(
1
4
)=
1
2
,同理有f(
3
4
)=
1
2
,當(dāng)x∈[
1
4
,
3
4
]時,由“非增函數(shù)”的定義可知,f(
3
4
)≤f(x)≤f(
1
4
),即f(x)=
1
2
.所以f(
5
11
)=f(
7
13
)=
1
2
.所以f(
1
8
)+f(
5
11
)+f(
7
13
)+f(
7
8
)=2,所以③成立.
④當(dāng)x∈[0,
1
4
]時,x≤-2x+1,因?yàn)楹瘮?shù)f(x)為區(qū)間D上的“非增函數(shù)”,所以f(x)≥f(-2x+1),所以f(f(x))≤f(-2x+1)≤f(x).所以④正確.
故答案為:①③④.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在區(qū)間D上的函數(shù)f(x),若存在閉區(qū)間[a,b]⊆D和常數(shù)c,使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2∈D,當(dāng)x2∉[a,b]時,f(x2)>c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平底型”函數(shù).
(Ⅰ)判斷函數(shù)f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否為R上的“平底型”函數(shù)?并說明理由;
(Ⅱ)設(shè)f(x)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式|t-k|+|t+k|≥|k|•f(x)對一切t∈R恒成立,求實(shí)數(shù)x的取值范圍;
(Ⅲ)若函數(shù)g(x)=mx+
x2+2x+n
是區(qū)間[-2,+∞)上的“平底型”函數(shù),求m和n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都二模)對于定義在區(qū)間D上的函數(shù)f(x),若滿足對?x1,x2∈D,且x1<x2時都有 f(x1)≥f(x2),則稱函數(shù)f(x)為區(qū)間D上的“非增函數(shù)”.若f(x)為區(qū)間[0,1]上的“非增函數(shù)”且f(0)=l,f(x)+f(l-x)=l,又當(dāng)x∈[0,
1
4
]
時,f(x)≤-2x+1恒成立.有下列命題:
①?x∈[0,1],f(x)≥0;
②當(dāng)x1,x2∈[0,1]且x1≠x2,時,f(x1)≠f(x)
?x∈[
1
4
,
3
4
]
時,都有f(x)=
1
2

④函數(shù)f(x)的圖象關(guān)于點(diǎn)(
1
2
,
1
2
)
對稱
其中你認(rèn)為正確的所有命題的序號為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城一模)對于定義在區(qū)間D上的函數(shù)f(x),若任給x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
(1)試判斷f(x)=x-1在區(qū)間[-2.1]上是否封閉,并說明理由;
(1)若函數(shù)g(x)=
3x+ax+1
在區(qū)間[3,10]上封閉,求實(shí)數(shù)a的取值范圍;
(1)若函數(shù)h(x)=x3-3x在區(qū)間[a,b[(a,b∈Z)上封閉,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽三模)對于定義在區(qū)間D上的函數(shù)f(X),若存在閉區(qū)間[a,b]?D和常數(shù)c,.使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2∈D,當(dāng)x2∉[a,b]時,f(x2)<c恒成立,則稱函數(shù)f(X)為區(qū)間D上的“平頂型”函數(shù).給出下列說法:
①“平頂型”函數(shù)在定義域內(nèi)有最大值;
②“平頂型”函數(shù)在定義域內(nèi)一定沒有最小值;
③函數(shù)f(x)=-|x+2|-|x-1|為R上的“平頂型”函數(shù);
④函數(shù)f(x)=sinx-|sinx|為R上的“平頂型”函數(shù).
則以上說法中正確的是
①③
①③
.(填上你認(rèn)為正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽三模)對于定義在區(qū)間D上的函數(shù)f(X),若存在閉區(qū)間[a,b]?D和常數(shù)c,使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2∈D,當(dāng)x2∉[a,b]時,f(x2)<c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平頂型”函數(shù).給出下列說法:
①“平頂型”函數(shù)在定義域內(nèi)有最大值;
②函數(shù)f(x)=x-|x-2|為R上的“平頂型”函數(shù);
③函數(shù)f(x)=sinx-|sinx|為R上的“平頂型”函數(shù);
④當(dāng)t≤
3
4
時,函數(shù),f(x)=
2,(x≤1)
log
1
2
(x-t),(x>1)
是區(qū)間[0,+∞)上的“平頂型”函數(shù).
其中正確的是
①②④
①②④
.(填上你認(rèn)為正確結(jié)論的序號)

查看答案和解析>>

同步練習(xí)冊答案