(14分)已知橢圓E:及點(diǎn)M(1,1)

(1)直線l過點(diǎn)M與橢圓E相交于A,B兩點(diǎn),求當(dāng)點(diǎn)M為弦AB中點(diǎn)時(shí)的直線l方程.

(2)直線l過點(diǎn)M與橢圓E相交于A,B兩點(diǎn),求弦AB的中點(diǎn)軌跡.

(3)(文)斜率為2的直線l與橢圓E相交于A,B兩點(diǎn),求弦AB的中點(diǎn)軌跡.

(3)(理)若橢圓E上存在兩點(diǎn)A,B關(guān)于直線l:y=2x+m對(duì)稱,求m的取值范圍.

 

【答案】

點(diǎn)差法:

(1)9y+4x-13=0

(2)

  

(3)(文)

(理)A,B的中點(diǎn)M為(x0,y0),kAB==

又中點(diǎn)M在直線l:y=2x+m上,y0=2x0+m②   由①②得:

點(diǎn)M必在橢圓內(nèi)部,所以有

解得:-2<m<2

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過A(-2,0)、B(2,0)、C(1,
3
2
)
三點(diǎn).
(1)求橢圓E的方程;
(2)過定點(diǎn)F(-
3
,0)
作直線l與橢圓E交于M、N兩點(diǎn),求△OMN的面積S的最大值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
9
+
y2
4
=1
及點(diǎn)M(1,1).
(1)直線l過點(diǎn)M與橢圓E相交于A,B兩點(diǎn),求當(dāng)點(diǎn)M為弦AB中點(diǎn)時(shí)的直線l方程;
(2)直線l過點(diǎn)M與橢圓E相交于A,B兩點(diǎn),求弦AB的中點(diǎn)軌跡;
(3)(文)斜率為2的直線l與橢圓E相交于A,B兩點(diǎn),求弦AB的中點(diǎn)軌跡.
(3)(理)若橢圓E上存在兩點(diǎn)A,B關(guān)于直線l:y=2x+m對(duì)稱,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)F1(-
5
,0)
,若橢圓上存在一點(diǎn)D,滿足以橢圓短軸為直徑的圓與線段DF1相切于線段DF1的中點(diǎn)F.
(Ⅰ)求橢圓E的方程;
(Ⅱ)已知兩點(diǎn)Q(-2,0),M(0,1)及橢圓G:
9x2
a2
+
y2
b2
=1
,過點(diǎn)Q作斜率為k的直線l交橢圓G于H,K兩點(diǎn),設(shè)線段HK的中點(diǎn)為N,連接MN,試問當(dāng)k為何值時(shí),直線MN過橢圓G的頂點(diǎn)?
(Ⅲ) 過坐標(biāo)原點(diǎn)O的直線交橢圓W:
9x2
2a2
+
4y2
b2
=1
于P、A兩點(diǎn),其中P在第一象限,過P作x軸的垂線,垂足為C,連接AC并延長交橢圓W于B,求證:PA⊥PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州模擬)已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,右焦點(diǎn)為F,且橢圓E上的點(diǎn)到點(diǎn)F距離的最小值為2.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的左、右頂點(diǎn)分別為A,B,過點(diǎn)A的直線l與橢圓E及直線x=8分別相交于點(diǎn)M,N.
(。┊(dāng)過A,F(xiàn),N三點(diǎn)的圓半徑最小時(shí),求這個(gè)圓的方程;
(ⅱ)若cos∠AMB=-
65
65
,求△ABM的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案