(本小題滿(mǎn)分14分)設(shè)橢圓)經(jīng)過(guò)點(diǎn),其離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ) 直線(xiàn)交橢圓于兩點(diǎn),且的面積為,求的值.
(Ⅰ)(Ⅱ)

試題分析:(Ⅰ)由已知,得, ,所求橢圓M的方程為
.(6分)
(Ⅱ)由,得,由得,,設(shè),, .  

.(9分)
的距離為.(10分)
 ,
所以,,,
顯然,故.(14分)
點(diǎn)評(píng):本題計(jì)算量較大,對(duì)于文科生是拉開(kāi)差距的題目
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)如圖,橢圓的離心率為,直線(xiàn)所圍成的矩形ABCD的面積為8.
 
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ) 設(shè)直線(xiàn)與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線(xiàn)的焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的直線(xiàn)與橢圓相切,直線(xiàn)軸交于點(diǎn),當(dāng)為何值時(shí)的面積有最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是橢圓的兩個(gè)焦點(diǎn),點(diǎn)M在橢圓上,若△是直角三角形,則△的面積等于(  )
A.48/5B.36/5C.16D.48/5或16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知、是橢圓的左、右焦點(diǎn),弦過(guò),則的周長(zhǎng)為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若橢圓的離心率為,焦點(diǎn)在軸上,且長(zhǎng)軸長(zhǎng)為10,曲線(xiàn)上的點(diǎn)與橢圓的兩個(gè)焦點(diǎn)的距離之差的絕對(duì)值等于4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求曲線(xiàn)的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓上一點(diǎn)到焦點(diǎn)的距離為2,的中點(diǎn),則等于(  )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分) 已知橢圓E:=1(a>b>o)的離心率e=,且經(jīng)過(guò)點(diǎn)(,1),O為坐標(biāo)原點(diǎn)。

(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
。á颍﹫AO是以橢圓E的長(zhǎng)軸為直徑的圓,M是直線(xiàn)x=-4在x軸上方的一點(diǎn),過(guò)M作圓O的兩條切線(xiàn),切點(diǎn)分別為P、Q,當(dāng)∠PMQ=60°時(shí),求直線(xiàn)PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)為F1,F(xiàn)2(0,),且離心率。
(I)求橢圓的方程;
(II)直線(xiàn)l(與坐標(biāo)軸不平行)與橢圓交于不同的兩點(diǎn)A、B,且線(xiàn)段AB中點(diǎn)的橫坐標(biāo)
,求直線(xiàn)l的斜率的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案