試題分析:
(Ⅰ)f′(x)=x
2+(1-a)x-a=(x+1)(x-a),又a>0,
∴當x<-1時,f′(x)>0,f(x)單調遞增;當-1<x<a時,f′(x)<0,f(x)單調遞減;當x>a時,f′(x)>0,f(x)單調遞增.
所以f(x)的單調增區(qū)間為:(-∞,-1),(a,+∞);單調減區(qū)間為:(-1,a).
(Ⅱ)由(Ⅰ)知f(x)在區(qū)間(-2,-1)內單調遞增,在區(qū)間(-1,0)內單調遞減,從而函數f(x)在(-2,0)內恰有兩個零點當且僅當
,解得
。
所以a的取值范圍是
。
(Ⅲ)a=1時,
,由(Ⅰ)知f(x)在[-3,-1]上單調遞增,在[-1,1]上單調遞減,在[1,2]上單調遞增.
(1)當t∈[-3,-2]時,t+3∈[0,1],-1∈[t,t+3],f(x)在[t,-1]上單調遞增,在[-1,t+3]上單調遞減,因此,f(x)在[t,t+3]上的最大值M(t)=f(-1)="-"
,而最小值m(t)為f(t)與f(t+3)中的較小者.由f(t+3)-f(t)=3(t+1)(t+2)知,當t∈[-3,-2]時,f(t)≤f(t+3),故m(t)=f(t),所以g(t)=f(-1)-f(t).而f(t)在[-3,-2]上單調遞增,因此f(t)≤f(-2)="-"
,g(t)在[-3,-2]上的最小值為g(-2)="-"
-(-
)=
。
(2)當t∈[-2,-1]時,t+3∈[1,2],且-1,1∈[t,t+3].下面比較f(-1),f(1),f(t),f(t+3)的大。蒮(x)在[-2,-1],[1,2]上單調遞增,有f(-2)≤f(t)≤f(-1),f(1)≤f(t+3)≤f(2).又由f(1)=f(-2)=-
,f(-1)=f(2)=-
,從而M(t)=f(-1)=-
,m(t)=f(1)=-
,所以g(t)=M(t)-m(t)=
。
綜上,函數g(t)在區(qū)間[-3,-1]上的最小值為
。
點評:本題考查了應用導數研究函數的單調性、零點以及函數在閉區(qū)間上的最值問題,同時考查分析問題、解決問題的能力以及分類討論的數學思想.