已知函數(shù)為偶函數(shù)(0<θ<π), 其圖象與直線y=2的交點(diǎn)的橫坐標(biāo)為的最小值為π,則(     )
A.ω=2,θ=B.ω=,θ=
C.ω=,θ=D.ω=2,θ=
A

試題分析:由已知條件可知,函數(shù)與y=2的
交點(diǎn)的橫坐標(biāo)為的最小值為π,那么說明了函數(shù)的周期為,同時(shí)且三角函數(shù)為偶函數(shù),則說明了,由于0<θ<π,因此可知故選A

點(diǎn)評:函數(shù)的圖像直觀的體現(xiàn)了函數(shù)的 性質(zhì),因此在解決三角函數(shù)周期等問題時(shí),我們往往構(gòu)造函數(shù),利用函數(shù)的圖像解題,體現(xiàn)了數(shù)形結(jié)合法的運(yùn)用。屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=f(x)的圖象如圖所示,則不等式f(x)<f(-x)+x的解集為______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(其中) ,點(diǎn)從左到右依次是函數(shù)圖象上三點(diǎn),且.
(1)證明: 函數(shù)上是減函數(shù);
(2)求證:⊿是鈍角三角形;
(3)試問,⊿能否是等腰三角形?若能,求⊿面積的最大值;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率P與日產(chǎn)量x(萬件)之間大體滿足關(guān)系:(其中c為小于6的正常數(shù)).  (注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品),已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每生產(chǎn)出1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.
(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù),
(1)若時(shí),在其定義域內(nèi)單調(diào)遞增,求的取值范圍;
(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于,兩點(diǎn),過線段的中點(diǎn)軸的垂線分別交、于點(diǎn),問是否存在點(diǎn),使處的切線與處的切線平行?若存在,求的橫坐標(biāo),若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)="2" sin(0≤x≤5),點(diǎn)A、B分別是函數(shù)y=f(x)圖像上的最高點(diǎn)和最低點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo)以及·的值;
(2)沒點(diǎn)A、B分別在角、的終邊上,求tan()的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,且,當(dāng)時(shí),       ;若把表示成的函數(shù),其解析式是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分分)已知函數(shù),是不同時(shí)為零的常數(shù)).
(1)當(dāng)時(shí),若不等式對任意恒成立,求實(shí)數(shù)的取值范圍;
(2)求證:函數(shù)內(nèi)至少存在一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

無論值如何變化,函數(shù))恒過定點(diǎn)(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案