如圖,P是橢圓上的一點(diǎn),F是橢圓的左焦點(diǎn),且=(+),||=4,則點(diǎn)P到該橢圓左準(zhǔn)線的距離為

A.6                B.4                    C.3                    D.

D?

解析:∵=(+),∴QPF的中點(diǎn).?

又∵||=4,∴P到右焦點(diǎn)的距離為8.?

∴|PF|=2a-8=2,E==.∴到左準(zhǔn)線的距離d==.∴選D.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知以原點(diǎn)O為中心的橢圓的一條準(zhǔn)線方程為y=
4
3
3
,離心率e=
3
2
,M是橢圓上的動(dòng)點(diǎn)
(Ⅰ)若C,D的坐標(biāo)分別是(0,-
3
),(0,
3
)
,求|MC|•|MD|的最大值;
(Ⅱ)如題(20)圖,點(diǎn)A的坐標(biāo)為(1,0),B是圓x2+y2=1上的點(diǎn),N是點(diǎn)M在x軸上的射影,點(diǎn)Q滿足條件:
OQ
=
OM
+
ON
,
QA
BA
=0
、求線段QB的中點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓的中心為原點(diǎn)0,離心率e=
2
2
,一條準(zhǔn)線的方程是x=2
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)P滿足:
OP
=
OM
+2
ON
,其中M、N是橢圓上的點(diǎn),直線OM與ON的斜率之積為-
1
2

問:是否存在定點(diǎn)F,使得|PF|與點(diǎn)P到直線l:x=2
10
的距離之比為定值;若存在,求F的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的焦點(diǎn),P為橢圓上的點(diǎn),PF1⊥OX軸,且OP和橢圓的一條長(zhǎng)軸頂點(diǎn)A和短軸頂點(diǎn)B的連線AB平行.
(1)求橢圓的離心率e
(2)若Q是橢圓上任意一點(diǎn),證明∠F1QF2
π
2

(3)過F1與OP垂直的直線交橢圓于M,N,若△M F2N的面積為20
3
,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,P是雙曲線數(shù)學(xué)公式上的動(dòng)點(diǎn),F(xiàn)1、F2是雙曲線的焦點(diǎn),M是∠F1PF2的平分線上的一點(diǎn),且數(shù)學(xué)公式.有一同學(xué)用以下方法研究|OM|:延長(zhǎng)F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得數(shù)學(xué)公式.類似地:P是橢圓數(shù)學(xué)公式上的動(dòng)點(diǎn),F(xiàn)1、F2是橢圓的焦點(diǎn),M是∠F1PF2的平分線上的一點(diǎn),且數(shù)學(xué)公式.則|OM|的取值范圍是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年湖北省黃岡中學(xué)高三適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

如圖,P是雙曲線上的動(dòng)點(diǎn),F(xiàn)1、F2是雙曲線的焦點(diǎn),M是∠F1PF2的平分線上的一點(diǎn),且.有一同學(xué)用以下方法研究|OM|:延長(zhǎng)F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得.類似地:P是橢圓上的動(dòng)點(diǎn),F(xiàn)1、F2是橢圓的焦點(diǎn),M是∠F1PF2的平分線上的一點(diǎn),且.則|OM|的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案