已知數(shù)列{an}的每一項(xiàng)都是正數(shù),滿足a1=2,且an+12-anan+1-2an2=0;等差數(shù)列{bn}的前n項(xiàng)和為Tn,b2=3,T5=25.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)比較
1
T1
+
1
T2
+…+
1
Tn
與2的大;
(3)若
b1
a1
+
b2
a2
+…+
bn
an
<c恒成立,求整數(shù)c的最小值.
(1)an+12-anan+1-2an2=0
得(an+1-2an)(an+1+an)=0,
由于數(shù)列{an}的每一項(xiàng)都是正數(shù),∴an+1=2an,∴an=2n
設(shè)bn=b1+(n-1)d,由已知有b1+d=3,5b1+
5×4
2
d=25,
解得b1=1,d=2,∴bn=2n-1.
(2)由(1)得Tn=n2,∴
1
Tn
=
1
n2
,
當(dāng)n=1時(shí),
1
T1
=1<2.
當(dāng)n≥2時(shí),
1
n2
1
(n-1)n
=
1
n-1
-
1
n

1
T1
+
1
T2
+…+
1
Tn
<1+
1
1
-
1
2
+
1
2
-
1
3
++
1
n-1
-
1
n
=2-
1
n
<2.
(3)記Pn=
b1
a1
+
b2
a2
+…+
bn
an
=
1
2
+
3
22
+
5
23
+…+
2n-1
2n

1
2
Pn=
1
22
+
3
23
++
2n-3
2n
+
2n-1
2n+1

兩式相減得Pn=3-
2n+3
2n

∵Pn遞增,∴
1
2
≤Pn<3,P4=
37
16
>2,
∴最小的整數(shù)c=3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的每一項(xiàng)都是正數(shù),滿足a1=2,且an+12-anan+1-2an2=0;等差數(shù)列{bn}的前n項(xiàng)和為Tn,b2=3,T5=25.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)比較
1
T1
+
1
T2
+…+
1
Tn
與2的大小;
(3)若
b1
a1
+
b2
a2
+…+
bn
an
<c恒成立,求整數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的每一項(xiàng)都是非負(fù)實(shí)數(shù),且對(duì)任意m,n∈N*有am+n-am-an=0或am+n-am-an=1.
又知a2=0,a3>0,a99=33.則a3=
 
,a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年廣東省珠海市高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知數(shù)列{an}的每一項(xiàng)都是正數(shù),滿足a1=2,且an+12-anan+1-2an2=0;等差數(shù)列{bn}的前n項(xiàng)和為Tn,b2=3,T5=25.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)比較與2的大小;
(3)若<c恒成立,求整數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年北京市西城區(qū)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知數(shù)列{an}的每一項(xiàng)都是非負(fù)實(shí)數(shù),且對(duì)任意m,n∈N*有am+n-am-an=0或am+n-am-an=1.
又知a2=0,a3>0,a99=33.則a3=    ,a10=   

查看答案和解析>>

同步練習(xí)冊(cè)答案