已知橢圓長半軸與短半軸之比是5:3,焦距是8,焦點在x軸上,則此橢圓的標準方程是


  1. A.
    數(shù)學公式+數(shù)學公式=1
  2. B.
    數(shù)學公式+數(shù)學公式=1
  3. C.
    數(shù)學公式+數(shù)學公式=1
  4. D.
    數(shù)學公式+數(shù)學公式=1
B
分析:設(shè)橢圓的標準方程為:,根據(jù)橢圓長半軸與短半軸之比是5:3,焦距是8,可求橢圓的標準方程.
解答:由題意,設(shè)橢圓的標準方程為:
∵橢圓長半軸與短半軸之比是5:3,焦距是8
∴a:b=5:3,16=a2-b2
∴a2=25,b2=9
∴橢圓的標準方程是
故選B.
點評:本題以橢圓的性質(zhì)為載體,考查橢圓的標準方程,解題時應注意c2=a2-b2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,直線l:y=x+2
2
與以原點為圓心、以橢圓C1的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓C1的方程.
(Ⅱ)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點F2,求四邊形ABCD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓長半軸與短半軸之比是5:3,焦距是8,焦點在x軸上,則此橢圓的標準方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:河北省唐山一中2011-2012學年高二上學期第二次調(diào)研考試數(shù)學試題 題型:013

已知橢圓長半軸與短半軸之比是5∶3,焦距是8,焦點在x軸上,則此橢圓的標準方程是

[  ]
A.

=1

B.

=1

C.

=1

D.

=1

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河北省唐山一中高二(上)第二次調(diào)研數(shù)學試卷(解析版) 題型:選擇題

已知橢圓長半軸與短半軸之比是5:3,焦距是8,焦點在x軸上,則此橢圓的標準方程是( )
A.+=1
B.+=1
C.+=1
D.+=1

查看答案和解析>>

同步練習冊答案