已知數(shù)列滿足
(1)求證:數(shù)列的奇數(shù)項(xiàng),偶數(shù)項(xiàng)均構(gòu)成等差數(shù)列;
(2)求的通項(xiàng)公式;
(3)設(shè),求數(shù)列的前項(xiàng)和.
(I)見解析;(II);(III).
【解析】
試題分析:(I)依題意得到,
兩式相減得,肯定數(shù)列的奇數(shù)項(xiàng),偶數(shù)項(xiàng)均構(gòu)成等差數(shù)列,且公差都為4.
這是證明等差數(shù)列的基本方法.
(II)由,
討論研究,得到.
(III),利用“錯(cuò)位相消法”可得,
試題解析:(I)由-----①得----------②
②減①得
所以數(shù)列的奇數(shù)項(xiàng),偶數(shù)項(xiàng)均構(gòu)成等差數(shù)列,且公差都為4.
(II)由
得,故,
由于,
所以,.
(III),利用“錯(cuò)位相消法”可得,.
考點(diǎn):等差數(shù)列,“錯(cuò)位相消法”求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆湖北省荊門市高一下學(xué)期期末質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列滿足
(1) 求證:數(shù)列的奇數(shù)項(xiàng),偶數(shù)項(xiàng)均構(gòu)成等差數(shù)列;
(2) 求的通項(xiàng)公式;
(3) 設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆安徽無為開城中學(xué)高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列滿足=-1,,數(shù)列滿足
(1)求證:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式.
(2)求證:當(dāng)時(shí),
(3)設(shè)數(shù)列的前項(xiàng)和為,求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市、鹽城市高三第一次模擬考試數(shù)學(xué)(解析版) 題型:解答題
(本小題滿分16分) [已知數(shù)列滿足
,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若對(duì)每一個(gè)正整數(shù),若將按從小到大的順序排列后,此三項(xiàng)均能構(gòu)成等
差數(shù)列, 且公差為.①求的值及對(duì)應(yīng)的數(shù)列.
②記為數(shù)列的前項(xiàng)和,問是否存在,使得對(duì)任意正整數(shù)恒成立?若存
在,求出的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省高三下學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本小題滿分16分)
已知數(shù)列滿足,(1)若,求;
(2)是否存在,使當(dāng)時(shí),恒為常數(shù)。若存在求,否則說明理由;
(3)若,求的前項(xiàng)的和(用表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com