(本小題滿分14分)如圖,在四棱錐中,平面平面為等邊三角形,底面為菱形,,的中點(diǎn),。

 

(1)求證:平面;

 (2) 求四棱錐的體積

(3)在線段上是否存在點(diǎn),使平面;   若存在,求出的值。

 

【答案】

(1)見解析;(2)

(3)存在,當(dāng)時,平面。

【解析】本試題主要是考查了空間幾何體中線面的垂直問題,以及錐體的體積,和線面平行的判定綜合運(yùn)用。

(1)連BD,四邊形ABCD菱形,  ∵AD⊥AB,  ∠BAD=60°

    △ABD為正三角形, Q為AD中點(diǎn), ∴AD⊥BQ

∵PA=PD,Q為AD的中點(diǎn),AD⊥PQ 又BQ∩PQ=Q  ∴AD⊥平面PQB.

(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111918002644131172/SYS201211191801210351328589_DA.files/image005.png">平面,那么是四棱錐的高,

利用錐體的體積公式得到。

(3)因?yàn)锳Q//BC,那么結(jié)合PA//MN,得到判定定理,從而得到證明。

解:(1)連BD,四邊形ABCD菱形,  ∵AD⊥AB,  ∠BAD=60°

    △ABD為正三角形, Q為AD中點(diǎn), ∴AD⊥BQ…………………………2分

∵PA=PD,Q為AD的中點(diǎn),AD⊥PQ……………………………3分

又BQ∩PQ=Q  ∴AD⊥平面PQB. ………………………………5分

(2)平面平面

平面平面=

平面,

所以平面…………………………………7分

是四棱錐的高,

…………………………………9分

(3)存在,當(dāng)時,平面

可得,,……………………11分

   ………………………………………………………12分

平面,平面,平面………………14分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案