解答:解:(1)當(dāng)a=1時(shí),f(x)=lnx-x
2+x,其定義域是(0,+∞)
∴
f′(x)=-2x+1= - …(2分)
令f′(x)=0,即
-=0,解得
x=-或x=1.∵x>0,
∴
x=-舍去.
當(dāng)0<x<1時(shí),f′(x)>0;當(dāng)x>1時(shí),f′(x)<0.
∴函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減
∴當(dāng)x=1時(shí),函數(shù)f(x)取得最大值,其值為f(1)=ln1-1
2+1=0.
當(dāng)x≠1時(shí),f(x)<f(1),即f(x)<0.
∴函數(shù)f(x)只有一個(gè)零點(diǎn). …(7分)
(2)顯然函數(shù)f(x)=lnx-a
2x
2+ax的定義域?yàn)槭牵?,+∞)
∴
f′(x)=-2a2x+a==
…(8分)
1當(dāng)a=0時(shí),
f′(x)=>0,∴f(x)在區(qū)間(1,+∞)上為增函數(shù),不合題意 …(9分)
2 當(dāng)a>0時(shí),f′(x)≤0(x>0)等價(jià)于(2ax+1)(ax-1)≥0(x>0),即
x>此時(shí)f(x)的單調(diào)遞減區(qū)間為[
,+∞).
依題意,得
,解之得a≥1. …(11分)
綜上,實(shí)數(shù)a的取值范圍是[1,+∞) …(14分)
法二:
①當(dāng)a=0時(shí),
f′(x)=>0,∴f(x)在區(qū)間(1,+∞)上為增函數(shù),不合題意…(9分)
②當(dāng)a≠0時(shí),要使函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),只需f′(x)≤0在區(qū)間(1,+∞)上恒成立,
∵x>0,∴只要2a
2x
2-ax-1≥0,且a>0時(shí)恒成立,
∴
解得a≥1
綜上,實(shí)數(shù)a的取值范圍是[1,+∞) …(14分)