精英家教網 > 高中數學 > 題目詳情

圓(x-1)2+(y-1)2=1關于x軸對稱的圓方程是


  1. A.
    x2+y2+2x+2y+1=0
  2. B.
    x2+y2-2x-2y+1=0
  3. C.
    x2+y2+2x-2y+1=0
  4. D.
    x2+y2-2x+2y+1=0
D
圓(x-1)2+(y-1)2=1的圓心(1,1)關于x軸對稱的點的坐標為(1,-1),由此可得對稱圓方程為(x-1)2+(y+1)2=1,即x2+y2-2x+2y+1=0,故應選D.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(x-1)2+(y+
3
)2=1
的切線方程中有一個是(  )
A、x-y=0B、x+y=0
C、x=0D、y=0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓(x+1)2+(y+
3
)2=1
,下列方程中可以是該圓切線方程的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若直線l是圓(x-1)2+(y+
3
)2=1
的一個切線方程,則直線l的方程可以是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

P(x,y)為圓(x-1)2+(y-1)2=1上任意一點,求
x2+y2
的取值范圍
[
2
-1,
2
+1]
[
2
-1,
2
+1]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•漳州模擬)設雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)
的漸近線與圓(x-1)2+(y-1)2=
1
5
相切,則該雙曲線的離心率等于( 。

查看答案和解析>>

同步練習冊答案