如圖,直線l:y=x+b與拋物線C:x2=4y相切于點A.

(1)求實數(shù)b的值.
(2)求以點A為圓心,且與拋物線C的準(zhǔn)線相切的圓的方程.

(1) b=-1   (2) (x-2)2+(y-1)2=4

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C1:+=1(a>b>0)的右頂點為A(1,0),過C1的焦點且垂直長軸的弦長為1.

(1)求橢圓C1的方程;
(2)設(shè)點P在拋物線C2:y=x2+h(h∈R)上,C2在點P處的切線與C1交于點M,N.當(dāng)線段AP的中點與MN的中點的橫坐標(biāo)相等時,求h的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定點A(-2,0)和B(2,0),曲線E上任一點P滿足|PA|-|PB|=2.
(1)求曲線E的方程;
(2)延長PB與曲線E交于另一點Q,求|PQ|的最小值;
(3)若直線l的方程為x=a(a≤),延長PB與曲線E交于另一點Q,如果存在某一位置,使得從PQ的中點R向l作垂線,垂足為C,滿足PC⊥QC,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,離心率為,若不過點A的動直線l與橢圓C相交于P,Q兩點,且·=0.

(1)求橢圓C的方程.
(2)求證:直線l過定點,并求出該定點N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓E=1(a>b>0)的右焦點為F,過原點和x軸不重合的直線與橢圓E相交于A,B兩點,且|AF|+|BF|=2,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2y2的切線L與橢圓E相交于P,Q兩點,當(dāng)P,Q兩點橫坐標(biāo)不相等時,OP(O為坐標(biāo)原點)與OQ是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:+=1(a>b>0)的一個頂點A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程.
(2)當(dāng)△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)的焦距為,且過點(,),右焦點為.設(shè),上的兩個動點,線段的中點的橫坐標(biāo)為,線段的中垂線交橢圓,兩點.

(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線C:的離心率為,左頂點為(-1,0)。
(1)求雙曲線方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點A、B,且線段AB的中點在圓上,求m的值和線段AB的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動點P與平面上兩定點連線的斜率的積為定值.
(1)試求動點P的軌跡方程C.
(2)設(shè)直線與曲線C交于M、N兩點,當(dāng)|MN|=時,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案