已知函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線在原點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),討論函數(shù)在區(qū)間上的單調(diào)性;
(Ⅲ)證明不等式對(duì)任意成立.

(Ⅰ)
(Ⅱ)函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.
(Ⅲ)由(Ⅱ)知,當(dāng)時(shí),在區(qū)間上單調(diào)遞增;
從而可得,
得到對(duì)任意成立.
通過取,,得,
將上述n個(gè)不等式求和,得到:,
證得對(duì)任意成立.

解析試題分析:(Ⅰ)首先求,切線的斜率,求得切線方程.
(Ⅱ)當(dāng)時(shí),根據(jù),只要考查的分子的符號(hào).
通過討論,得時(shí)在區(qū)間上單調(diào)遞增;
當(dāng)時(shí),令求得其根. 利用“表解法”得出結(jié)論:函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.
(Ⅲ)由(Ⅱ)知,當(dāng)時(shí),在區(qū)間上單調(diào)遞增;
從而可得,
得到對(duì)任意成立.
通過取,得,
將上述n個(gè)不等式求和,得到:
證得對(duì)任意成立.
試題解析:
(Ⅰ)當(dāng)時(shí),,切線的斜率,
所以切線方程為,即.       3分
(Ⅱ)當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/13/e/blhlm3.png" style="vertical-align:middle;" />,所以只要考查的符號(hào).
,得,
當(dāng)時(shí),,從而,在區(qū)間上單調(diào)遞增;
當(dāng)時(shí),由解得.  6分
當(dāng)變化時(shí),的變化情況如下表:

函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增. 9分
(Ⅲ)由(Ⅱ)知,當(dāng)時(shí),在區(qū)間上單調(diào)遞增;
所以,
對(duì)任意成立.      11分
,,
,即,.  13分
將上述n個(gè)不等式求和,得到:,
即不等式對(duì)任意成立.   14分
考點(diǎn):1、導(dǎo)數(shù)的幾何意義,2、

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),畫出函數(shù)的簡(jiǎn)圖,并指出的單調(diào)遞減區(qū)間;
(2)若函數(shù)有4個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)二次函數(shù)在區(qū)間上的最大值、最小值分別是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,記,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)不等式對(duì)一切R恒成立,求實(shí)數(shù)的取值范圍;
(2)已知是定義在上的奇函數(shù),當(dāng)時(shí),,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/07/6/cmsra.png" style="vertical-align:middle;" />的奇函數(shù)滿足,且當(dāng)時(shí),
(Ⅰ)求上的解析式;
(Ⅱ)當(dāng)取何值時(shí),方程上有解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),其中是常數(shù),且
(1)求函數(shù)的極值;
(2)證明:對(duì)任意正數(shù),存在正數(shù),使不等式成立;
(3)設(shè),且,證明:對(duì)任意正數(shù)都有:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)y=
(Ⅰ)求函數(shù)y的最小正周期;
(Ⅱ)求函數(shù)y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=-2alnx(a>0)
(I)求函數(shù)f(x)的單調(diào)區(qū)間和最小值.
(II)若方程f(x)=2ax有唯一解,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f (x)=x3(1-a)x2-3ax+1,a>0.
(Ⅰ) 證明:對(duì)于正數(shù)a,存在正數(shù)p,使得當(dāng)x∈[0,p]時(shí),有-1≤f (x)≤1;
(Ⅱ) 設(shè)(Ⅰ)中的p的最大值為g(a),求g(a)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案