分析:(Ⅰ)由題意可得
2an=Sn+,令n=1可求a
1,n≥2時,
Sn=2an-,
Sn-1=2an-1-,兩式相減可得遞推式,由遞推式可判斷該數(shù)列為等比數(shù)列,從而可得a
n;
(Ⅱ)表示出b
n,進(jìn)而可得
,并拆項(xiàng),利用裂項(xiàng)相消法可求和,由和可得結(jié)論;
解答:解:(Ⅰ)∵
,an,Sn成等差數(shù)列,∴
2an=Sn+,
當(dāng)n=1時,
2a1=a1+,解得
a1=;
當(dāng)n≥2時,
Sn=2an-,
Sn-1=2an-1-,
兩式相減得:a
n=S
n-S
n-1=2a
n-2a
n-1,∴
=2,
所以數(shù)列{a
n}是首項(xiàng)為
,公比為2的等比數(shù)列,
an=×2n-1=2n-2.
(Ⅱ)b
n=(log
2a
2n+1)×(log
2a
2n+3)
=
log222n+1-2×
log222n+3-2=(2n-1)(2n+1),
==(-),
則
+++…+=
[(1-)+(-)+…+(-)]=
(1-)<.
點(diǎn)評:本題考查數(shù)列與不等式的綜合,考查裂項(xiàng)相消法對數(shù)列求和,考查等比數(shù)列的通項(xiàng)公式,屬中檔題.