【題目】已知a∈R,函數(shù)f(x)滿足f(2x)=x2﹣2ax+a2﹣1.
(Ⅰ)求f(x)的解析式,并寫出f(x)的定義域;
(Ⅱ)若f(x)在 上的值域?yàn)閇﹣1,0],求實(shí)數(shù)a的取值范圍.

【答案】解:(Ⅰ)令2x=t>0,則x=log2t,則

定義域?yàn)椋海?,+∞);

(Ⅱ)令g(x)=f(2x),則f(x)=

∴f(x)在 上的值域?yàn)閇﹣1,0]等價(jià)于g(x)=x2﹣2ax+a2﹣1

在區(qū)間[a﹣1,a2﹣2a+2]上的值域?yàn)閇﹣1,0].

∵g(a)=﹣1∈[﹣1,0],∴a∈[a﹣1,a2﹣2a+2],且g(x)在區(qū)間[a﹣1,a2﹣2a+2]上的最大值應(yīng)在區(qū)間端點(diǎn)處取得.

又g(a﹣1)=0恰為g(x)在該區(qū)間上的最大值,故a必在區(qū)間右半部分,即

解得


【解析】(Ⅰ)使用換元法令2x=t>0,則x=log2t代入即可求出;(Ⅱ)由題意,利用換元法將f(x)在 上的值域?yàn)閇﹣1,0]等價(jià)于g(x)=x2﹣2ax+a2﹣1在區(qū)間[a﹣1,a2﹣2a+2]上的值域?yàn)閇﹣1,0].從而求解可得實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的值域的相關(guān)知識(shí),掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人口問題是當(dāng)今世界各國普遍關(guān)注的問題.認(rèn)識(shí)人口數(shù)量的變化規(guī)律,可以為有效控制人口增長(zhǎng)提供依據(jù).早在1798年,英國經(jīng)濟(jì)學(xué)家馬爾薩斯(T.R.Malthus,1766—1834)就提出了自然狀態(tài)下的人口增長(zhǎng)模型: ,其中x表示經(jīng)過的時(shí)間, 表示x=0時(shí)的人口,r表示人口的平均增長(zhǎng)率.

下表是1950―1959年我國人口數(shù)據(jù)資料:

如果以各年人口增長(zhǎng)率的平均值作為我國這一時(shí)期的人口增長(zhǎng)率,用馬爾薩斯人口增長(zhǎng)模型建立我國這一時(shí)期的具體人口增長(zhǎng)模型,某同學(xué)利用圖形計(jì)算器進(jìn)行了如下探究:

由此可得到我國1950―1959年我國這一時(shí)期的具體人口增長(zhǎng)模型為____________. (精確到0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x)=x﹣ln x﹣2.
(Ⅰ)求函數(shù) f ( x)的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)f(x)=,其中2<m<2,m∈Z,滿足:

(1)f(x)是區(qū)間(0,+∞)上的增函數(shù);

(2)對(duì)任意的x∈R,都有f(x) +f(x)=0.

求同時(shí)滿足條件(1)、(2)的冪函數(shù)f(x)的解析式,并求x∈[0,3]時(shí),f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R)在區(qū)間(0,1]上有零點(diǎn)x0 , 則 的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M:(x﹣1)2+y2= ,橢圓C: +y2=1,若直線l與橢圓交于A,B兩點(diǎn),與圓M相切于點(diǎn)P,且P為AB的中點(diǎn),則這樣的直線l有(
A.2條
B.3條
C.4條
D.6條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點(diǎn).

1求證:MN⊥CD;

2若∠PDA=45°,求證:MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)f(x)=xa的圖象經(jīng)過點(diǎn).

(1)求函數(shù)f(x)的解析式,并判斷奇偶性;

(2)判斷函數(shù)f(x)在(﹣,0)上的單調(diào)性,并用單調(diào)性定義證明.

(3)作出函數(shù)f(x)在定義域內(nèi)的大致圖象(不必寫出作圖過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓Γ: =1(a>b>0)的左右焦點(diǎn)分別為F1 , F2 , 焦距為2c,若直線y= 與橢圓Γ的一個(gè)交點(diǎn)M滿足∠MF1F2=2∠MF2F1 , 則該橢圓的離心率等于

查看答案和解析>>

同步練習(xí)冊(cè)答案