如圖,ABCD為直角梯形,∠C=∠CDA=90°,AD=2BC=2CD,P為平面ABCD外一點,且PB⊥BD.
(1)求證:PA⊥BD;
(2)若PC與CD不垂直,求證:PA≠PD;
(3)若直線l過點P,且直線l直線BC,試在直線l上找一點E,使得直線PC平面EBD.
精英家教網(wǎng)

精英家教網(wǎng)
(1)∵ABCD為直角梯形,AD=
2
AB=
2
BD,
∴AB⊥BD,(1分)
PB⊥BD,AB∩PB=B,AB,PB?平面PAB,
BD⊥平面PAB,(4分)
PA?面PAB,∴PA⊥BD.(5分)

(2)假設PA=PD,取AD中點N,連PN,BN,
則PN⊥AD,BN⊥AD,(7分)
AD⊥平面PNB,得PB⊥AD,(8分)
又PB⊥BD,得PB⊥平面ABCD,
∴PB⊥CD(9分)
又∵BC⊥CD,∴CD⊥平面PBC,
∴CD⊥PC,與已知條件PC與CD
不垂直矛盾
∴PC≠PD(10分)

(3)在上l取一點E,使PE=BC,(11分)
∵PEBC,∴四邊形BCPE是平行四邊形,(12分)
∴PCBE,PC?平面EBD,BE?平面EBD
∴PC平面EBD.(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,ABCD為直角梯形,∠C=∠CDA=90°,AD=2BC=2CD,P為平面ABCD外一點,且PB⊥BD.
(1)求證:PA⊥BD;
(2)若PC與CD不垂直,求證:PA≠PD;
(3)若直線l過點P,且直線l∥直線BC,試在直線l上找一點E,使得直線PC∥平面EBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD為直角梯形,∠DAB=∠ABC=90°,AB=BC=1,AD=2,PA⊥平面ABCD,PA=1.
(1)求點P到CD的距離;
(2)求證:平面PAC⊥平面PCD;
(3)求平面PAB與平面PCD所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(14分)如圖,ABCD為直角梯形,∠C=∠CDA=,AD=2BC=2CDP為平面ABCD外一點,且PBBD

    ⑴ 求證:PABD

    (2) 若CD不垂直,求證:

    ⑶ 若直線l過點P,且直線l∥直線BC,試在直線l上找一點E,

使得直線PC∥平面EBD.

      

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高三數(shù)學中等生強化練習(7)(解析版) 題型:解答題

如圖,ABCD為直角梯形,∠C=∠CDA=90°,AD=2BC=2CD,P為平面ABCD外一點,且PB⊥BD.
(1)求證:PA⊥BD;
(2)若PC與CD不垂直,求證:PA≠PD;
(3)若直線l過點P,且直線l∥直線BC,試在直線l上找一點E,使得直線PC∥平面EBD.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學小題限時訓練試卷(12)(解析版) 題型:解答題

如圖,ABCD為直角梯形,∠C=∠CDA=90°,AD=2BC=2CD,P為平面ABCD外一點,且PB⊥BD.
(1)求證:PA⊥BD;
(2)若PC與CD不垂直,求證:PA≠PD;
(3)若直線l過點P,且直線l∥直線BC,試在直線l上找一點E,使得直線PC∥平面EBD.

查看答案和解析>>

同步練習冊答案