【題目】如圖,在三棱錐中,是邊長(zhǎng)為1的正三角形,.

1)求證:;

2)點(diǎn)是棱的中點(diǎn),點(diǎn)P在底面內(nèi)的射影為點(diǎn),證明:平面;

3)求直線和平面所成角的大小.

【答案】1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3.

【解析】

1)取中點(diǎn),連結(jié),,由已知得,,由此能證明平面,從而證明

2)可得為等邊三角形,由,可得的中點(diǎn),即,從而得到平面

3)由(1)得平面平面,可得PB在平面面內(nèi)的攝影為,由(2)得為等邊三角形,即可得直線和平面所成角的大。

1)取中點(diǎn),連結(jié),,

是邊長(zhǎng)為的正三角形,

,,,平面,

平面,且平面,

.

2,得

,

為等邊三角形.

,的中點(diǎn),

點(diǎn)是棱的中點(diǎn),

平面,平面

平面.

3)由(1)知平面,而平面

所以平面平面,

所以在平面內(nèi)的射影為,

所以為直線和平面所成的角,

由(2)得為等邊三角形,

所以.

所以直線和平面所成角的大小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績(jī),頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);

2)由直方圖可認(rèn)為考生考試成績(jī)z服從正態(tài)分布,其中分別取考生的平均成績(jī)和考生成績(jī)的方差,那么抽取的4000名考生成績(jī)超過(guò)84.81分(含84.81分)的人數(shù)估計(jì)有多少人?

3)如果用抽取的考生成績(jī)的情況來(lái)估計(jì)全市考生的成績(jī)情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績(jī)不超過(guò)84.81分的考生人數(shù)為,求.(精確到0.001

附:;

,則;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會(huì)為了解同學(xué)對(duì)社團(tuán)活動(dòng)的滿意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[40,50),[50,60),[60,70),[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調(diào)查的問(wèn)卷滿意度評(píng)分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再?gòu)倪@5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),記的最小值為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,且下列三個(gè)關(guān)系:,中有且只有一個(gè)正確,則函數(shù)的值域是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),的圖象與直線分別交于兩點(diǎn),則(

A.的最小值為

B.使得曲線處的切線平行于曲線處的切線

C.函數(shù)至少存在一個(gè)零點(diǎn)

D.使得曲線在點(diǎn)處的切線也是曲線的切線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線上動(dòng)點(diǎn)與定點(diǎn)的距離和它到定直線的距離的比是常數(shù).若過(guò)的動(dòng)直線與曲線相交于兩點(diǎn).

(1)判斷曲線的名稱(chēng)并寫(xiě)出它的標(biāo)準(zhǔn)方程;

(2)是否存在與點(diǎn)不同的定點(diǎn),使得恒成立?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求上的最值;

(2)若,當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求此時(shí)實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案