【題目】已知函數(shù).
(1)求曲線在點處的切線方程;
(2)如果曲線的某一切線與直線垂直,求切點坐標(biāo)與切線的方程.
【答案】(1) y=13x-32;(2) 即y=4x-18或y=4x-14.
【解析】
(1)可判定點(2,-6)在曲線y=f(x)上.
∵f'(x)=(x3+x-16)'=3x2+1,
∴在點(2,-6)處的切線的斜率為k=f'(2)=13,
∴切線的方程為y=13(x-2)+(-6),
即y=13x-32.
(2)∵切線與直線y=-x+3垂直,
∴切線的斜率k=4.
設(shè)切點的坐標(biāo)為(x0,y0),則f'(x0)=3+1=4,
∴x0=±1,
∴或
∴切點坐標(biāo)為(1,-14)或(-1,-18),
切線方程為y=4(x-1)-14或y=4(x+1)-18.
即y=4x-18或y=4x-14.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(e=2.71828…),g(x)為其反函數(shù).
(1)求函數(shù)F(x)=g(x)﹣ax的單調(diào)區(qū)間;
(2)設(shè)直線l與f(x),g(x)均相切,切點分別為(x1 , f(x1)),(x2 , f(x2)),且x1>x2>0,求證:x1>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地一天中6時至14時的溫度變化曲線近似滿足函數(shù)T=Asin(ωt+φ)+B(其中<φ<π)6時至14時期間的溫度變化曲線如圖所示,它是上述函數(shù)的半個周期的圖象,那么圖中曲線對應(yīng)的函數(shù)解析式是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)的導(dǎo)函數(shù)的圖象,給出下列命題:
①是函數(shù)的極值點;
②是函數(shù)的最小值點;
③在處切線的斜率小于零;
④在區(qū)間上單調(diào)遞增。
則正確命題的序號是( )
A.①②
B.①④
C.②③
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①﹣3是函數(shù)y=f(x)的極值點;
②﹣1是函數(shù)y=f(x)的最小值點;
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(﹣3,1)上單調(diào)遞增.
則正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假.
(1)對數(shù)函數(shù)都是單調(diào)函數(shù);
(2)至少有一個整數(shù),它既能被11整除,又能被9整除;
(3)x∈{x|x>0}, ;
(4)x0∈Z,log2x0>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx , y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序( 。
A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,x2+1>m;命題q:指數(shù)函數(shù)f(x)=(3﹣m)x是增函數(shù).若“p∧q”為假命題且“p∨q”為真命題,則實數(shù)m的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com