【題目】某中學(xué)高二年級的甲、乙兩個(gè)班中,需根據(jù)某次數(shù)學(xué)預(yù)賽成績選出某班的5名學(xué)生參加數(shù)學(xué)競賽決賽,已知這次預(yù)賽他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學(xué)生成績的平均分是83,乙班5名學(xué)生成績的中位數(shù)是86.
(1)求出x,y的值,且分別求甲、乙兩個(gè)班中5名學(xué)生成績的方差、,并根據(jù)結(jié)
果,你認(rèn)為應(yīng)該選派哪一個(gè)班的學(xué)生參加決賽?
(2)從成績在85分及以上的學(xué)生中隨機(jī)抽取2名.求至少有1名來自甲班的概率.
【答案】(1)甲班參加;(2).
【解析】
試題(1)由題意知求出x=5,y=6.從而求出乙班學(xué)生的平均數(shù)為83,分別求出S12和S22,根據(jù)甲、乙兩班的平均數(shù)相等,甲班的方差小,得到應(yīng)該選派甲班的學(xué)生參加決賽.
(2)成績在85分及以上的學(xué)生一共有5名,其中甲班有2名,乙班有3名,由此能求出隨機(jī)抽取2名,至少有1名來自甲班的概率.
試題解析:(1)甲班的平均分為,易知.
;又乙班的平均分為,∴;
∵,,說明甲班同學(xué)成績更加穩(wěn)定,故應(yīng)選甲班參加.
(2)分及以上甲班有人,設(shè)為;乙班有人,設(shè)為,從這人中抽取人的選法有:,共種,其中甲班至少有名學(xué)生的選法有種,則甲班至少有名學(xué)生被抽到的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于平面上任意個(gè)點(diǎn)構(gòu)成的點(diǎn)集,如果其中任意兩點(diǎn)之間的距離均已確定,那么就稱這個(gè)點(diǎn)集是“穩(wěn)定的”.求證:在格點(diǎn)的平面點(diǎn)集中,無三點(diǎn)共線,且其中的個(gè)兩點(diǎn)之間的距離已被確定,那么點(diǎn)集就是“穩(wěn)定的”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的單調(diào)性;
(2)若對任意時(shí),都有,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程是,曲線的極坐標(biāo)方程是.
(1)求直線l和曲線的直角坐標(biāo)方程,曲線的普通方程;
(2)若直線l與曲線和曲線在第一象限的交點(diǎn)分別為P,Q,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體(如圖),則( )
A.直線CF與GD所成的角與向量所成的角相等
B.向量是平面ACH的法向量
C.直線CE與平面ACH所成角的正弦值與的平方和等于1
D.二面角的余弦值等于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司推廣線下分店,計(jì)劃在S市的A區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個(gè)數(shù),y表示這個(gè)x個(gè)分店的年收入之和.
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程
(2)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤最大?
(參考公式:,其中,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯(cuò)誤的是( )
A. 命題“若,則”的逆否命題是真命題
B. 命題“”的否定是“”
C. 若為真命題,則為真命題
D. 已知,則“”是“”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解甲、乙兩班的數(shù)學(xué)學(xué)習(xí)情況,從兩班各抽出10名學(xué)生進(jìn)行數(shù)學(xué)水平測試,成績?nèi)缦?單位:分):
甲班:82 84 85 89 79 80 91 89 79 74
乙班:90 76 86 81 84 87 86 82 85 83
(1)求兩個(gè)樣本的平均數(shù);
(2)求兩個(gè)樣本的方差和標(biāo)準(zhǔn)差;
(3)試分析比較兩個(gè)班的學(xué)習(xí)情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用電阻值分別為 、、、、、的電阻組裝成一個(gè)如圖的組件,在組裝中應(yīng)如何選取電阻,才能使該組件總電阻值最。孔C明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com