函數(shù)f(x)=x2+2ax+a2-2a在區(qū)間(-∞,3]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是


  1. A.
    (-∞,-3]
  2. B.
    [-3,+∞)
  3. C.
    (-∞,3]
  4. D.
    [3,+∞)
A
分析:由函數(shù)的解析式可得二次函數(shù)的圖象的對稱軸為 x=-a,開口向上,由-a≥3求得實(shí)數(shù)a的取值范圍.
解答:結(jié)合f(x)的圖象可知,函數(shù)的對稱軸為 x=-a,開口向上,當(dāng)f(x)在區(qū)間(-∞,3]上單調(diào)遞減時,應(yīng)有-a≥3,即a≤-3,
故選A.
點(diǎn)評:本題主要考查二次函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax+4+2lnx
(I)當(dāng)a=5時,求f(x)的單調(diào)遞減函數(shù);
(Ⅱ)設(shè)直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時切線l的方程;
(Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+2x在[m,n]上的值域是[-1,3],則m+n所成的集合是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-2x-3的圖象為曲線C,點(diǎn)P(0,-3).
(1)求過點(diǎn)P且與曲線C相切的直線的斜率;
(2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x2+2x,x∈(0,3]的值域?yàn)?!--BA-->
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+
12
x
+lnx的導(dǎo)函數(shù)為f′(x),則f′(2)=
5
5

查看答案和解析>>

同步練習(xí)冊答案