在四棱錐中,平面,,.
(Ⅰ)求證:;
(Ⅱ)求與平面所成角的正弦值;
(Ⅲ)線段上是否存在點(diǎn),使平面?說(shuō)明理由.
證明:(Ⅰ)在四棱錐中,因?yàn)?sub>平面,平面,
所以. 因?yàn)?sub>, 所以.
因?yàn)?sub>, 所以平面.
因?yàn)?sub>平面,所以.
(Ⅱ) 如圖,以為原點(diǎn)建立空間直角坐標(biāo)系. 不妨設(shè),則.
則.
所以,.
設(shè)平面的法向量.
所以 .即.
令,則.
所以 所以
所以與平面所成角的正弦值為.
(Ⅲ)(法一)當(dāng)為線段的中點(diǎn)時(shí),平面.
如圖:分別取的中點(diǎn),連結(jié).
所以,且. 因?yàn)?sub>且,
所以且. 所以四邊形是平行四邊形.
所以. 因?yàn)?sub>, 所以三角形是等腰三角形.
所以. 因?yàn)?sub>平面, 所以.
因?yàn)?sub>, 所以平面. 所以平面.
即在線段上存在點(diǎn),使平面.
(法二)設(shè)在線段上存在點(diǎn),當(dāng)時(shí),平面.
設(shè),則.所以.
即.所以.
所以.由(Ⅱ)可知平面的法向量.
若平面,則.即.解得.
所以當(dāng),即為中點(diǎn)時(shí),平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省普通高中招生考試數(shù)學(xué) 題型:解答題
(本小題滿分14分)如圖,在四棱錐中,平面PAD⊥平面ABCD,
AB=AD,∠BAD=60°,E、F分別是AP、AD的中點(diǎn)
求證:(1)直線EF‖平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省蘭州市高三第一次(3月)診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,在四棱錐中,平面,底面是菱形,,.
(Ⅰ)求證:;
(Ⅱ)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
在四棱錐中,平面,底面為矩形,.
(Ⅰ)當(dāng)時(shí),求證:;
(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分
又,得證。
第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即………6分
由此可知時(shí),存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得
由此知道a=2, 設(shè)平面POQ的法向量為
,所以 平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,又………………3分
(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即………6分
由此可知時(shí),存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,
設(shè)平面POQ的法向量為
,所以 平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年貴州省黔東南州高三第一次高考模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,在四棱錐中,平面,,,.
(Ⅰ)證明:;
(Ⅱ)求與平面所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆黑龍江省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(12分)在四棱錐中,平面PAD⊥平面ABCD, AB=AD,∠BAD=60°,E、F分別是AP、AD的中點(diǎn)
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com