【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為

1)求直線的普通方程及曲線的直角坐標方程;

2)設(shè)直線與曲線交于兩點,求的值.

【答案】(1),(2)

【解析】

1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,將曲線的極坐標方程先利用兩角和的正弦公式展開,再等式兩邊同時乘以,再代入代入化簡可得出曲線的直角坐標方程;

2)解法一:將直線的參數(shù)方程與曲線的普通方程聯(lián)立,得到關(guān)于的二次方程,列出韋達定理,由弦長公式得可求出;

解法二:計算圓心到直線的距離,并求出圓的半徑,利用勾股定理以及垂徑定理得出可計算出;

解法三:將直線的方程與曲線的直角坐標方程聯(lián)立,消去,得到關(guān)于的一元二次方程,列出韋達定理,利用弦長公式可計算出(其中為直線的斜率).

1)由直線的參數(shù)方程,消去參數(shù),

即直線普通方程為.

對于曲線,,,

,

,

曲線的直角坐標方程為.

2)解法一:將代入的直角坐標方程

整理得,

,

.

2)解法二:曲線的標準方程為,

曲線是圓心為,半徑的圓.

設(shè)圓心到直線:的距離為,.

.

(2) 解法三:聯(lián)立,消去整理得,

解得,.

,分別代入,

所以,直線與圓的兩個交點是.

所以,.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中任想一個數(shù)字,記為,再由乙猜甲剛才想的數(shù)字把乙猜的數(shù)字記為,且,若,則稱甲乙“心有靈犀”,現(xiàn)任意找兩個人玩這個游戲,得出他們“心有靈犀”的概率為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定圓,其圓心為,點為圓所在平面內(nèi)一定點,點為圓上一個動點,若線段的中垂線與直線交于點,則動點的軌跡可能為______.(寫出所有正確的序號)(1)橢圓;(2)雙曲線;(3)拋物線;(4)圓;(5)直線;(6)一個點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,同時滿足:對任意,總有,對定義域內(nèi)的,若滿足,恒有成立,則函數(shù)稱為“函數(shù)”.

1)判斷函數(shù)在區(qū)間上是否為“函數(shù)”,并說明理由;

2)當為“函數(shù)”時,求的最大值和最小值;

3)已知為“函數(shù)”:

證明:;

證明:對一切,都有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,12月1日至12月5日的晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù)如下表所示:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2組數(shù)據(jù)的概率.

(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程.

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為2的正方體中,,分別為棱的中點,為棱上的一點,且,設(shè)點的中點,則點到平面的距離為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為且過點橢圓C軸的交點為A、B(點A位于點B的上方),直線與橢圓C交于不同的兩點MN(點M位于點N的上方).

(1)求橢圓C的方程;

(2)求△OMN面積的最大值;

(3)求證:直線AN和直線BM交點的縱坐標為常值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中:

①若,滿足,則的最大值為;

②若,則函數(shù)的最小值為

③若,滿足,則的最小值為

④函數(shù)的最小值為

正確的有__________.(把你認為正確的序號全部寫上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的離心率為,圓正半軸交于點,圓在點處的切線被橢圓截得的弦長為.

1)求橢圓的方程;

2)設(shè)圓上任意一點處的切線交橢圓于點,求證:.

查看答案和解析>>

同步練習冊答案