已知向量向量
a
=(-m,4)
b
=(-9,m)
共線(xiàn)且同向,則m=( 。
分析:利用向量共線(xiàn)的充要條件,求出m值,然后判斷向量的方向即可.
解答:解:因?yàn)橄蛄肯蛄?span id="nqphksy" class="MathJye">
a
=(-m,4)與
b
=(-9,m)
共線(xiàn)且同向,
所以-36=-m2,解得m=±6.
當(dāng)m=-6時(shí),向量共線(xiàn)反向,m=6時(shí)共線(xiàn)同向,
故選C.
點(diǎn)評(píng):本題考查向量共線(xiàn)的充要條件的應(yīng)用:即
a
b
?a1b2-a2b1=0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•武漢模擬)已知平面向量
a
=(2m+1,3),
b
=(2,m),且
a
b
共線(xiàn),則實(shí)數(shù)m的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
與平面向量
b
滿(mǎn)足|
a
|=
3
,|
b
|=
2
,(
a
-
b
)⊥(
a
+2
b
)
,設(shè)向量
a
b
的夾角等于θ,那么θ等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(1,-2),
b
=(2,1),
c
=(-4,-2),則下列結(jié)論中錯(cuò)誤的是(  )
A、向量
c
與向量
b
共線(xiàn)
B、若
c
1
a
2
b
(λ1,λ2∈R),則λ1=0,λ2=-2
C、對(duì)同一平面內(nèi)任意向量
d
,都存在實(shí)數(shù)k1,k2,使得
d
=k1
b
+k2
c
D、向量
a
在向量
b
方向上的投影為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間向量
a
=(1,n,2),
b
=(-2,1,2),若2
a
-
b
b
垂直,則|
a
|等于(  )
A、
5
3
2
B、
21
2
C、
37
2
D、
3
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間向量
a
=(a1,a2,a3),
b
=(b1,b2,b3),定義兩個(gè)空間向量
a
b
之間的距離為d(
a
,
b
)=
3
i=1
|bi-ai|.
(1)若
a
=(1,2,3),
b
=(4,1,1),
c
=(
11
2
1
2
,0),證明:d(
a
,
b
)+d(
b
c
)=d(
a
,
c

(2)已知
c
=(c1,c2,c3
    ①證明:若?λ>0,使
b
-
a
=λ(
c
-
b
),則d(
a
b
)+d(
a
,
c
)=d(
a
,
c
).
    ②若d(
a
b
)+d(
b
,
c
)=d(
a
,
c
),是否一定?λ>0,使
b
-
a
=λ(
c
-
b
)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案