解:(1)方法一:
∵在△ABO中,OA=OB,∠OAB=30°,
∴∠AOB=180°-2×30°=120°,
∵PA、PB是⊙O的切線,
∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,
∴在四邊形OAPB中,
∠APB=360°-120°-90°-90°=60°.
方法二:
∵PA、PB是⊙O的切線∴PA=PB,OA⊥PA;
∵∠OAB=30°,OA⊥PA,
∴∠BAP=90°-30°=60°,
∴△ABP是等邊三角形,
∴∠APB=60°.
(2)方法一:如圖①,連接OP;
∵PA、PB是⊙O的切線,
∴PO平分∠APB,即∠APO=
∠APB=30°,
又∵在Rt△OAP中,OA=3,∠APO=30°,
∴AP=
=3
.
方法二:如圖②,作OD⊥AB交AB于點D;
∵在△OAB中,OA=OB,
∴AD=
AB;
∵在Rt△AOD中,OA=3,∠OAD=30°,
∴AD=OA•cos30°=
,
∴AP=AB=
.
分析:(1)方法1,根據(jù)四邊形的內(nèi)角和為360°,根據(jù)切線的性質(zhì)可知:∠OAP=∠OBP=90°,在求出∠AOB的度數(shù),可將∠APB的度數(shù)求出;
方法2,證明△ABP為等邊三角形,從而可將∠APB的度數(shù)求出;
(2)方法1,作輔助線,連接OP,在Rt△OAP中,利用三角函數(shù),可將AP的長求出;
方法2,作輔助線,過點O作OD⊥AB于點D,在Rt△OAD中,將AD的長求出,從而將AB的長求出,也即AP的長.
點評:本題考查了圓的切線性質(zhì),及解直角三角形的知識.運用切線的性質(zhì)來進行計算或論證,常通作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.