【題目】已知二次函數(shù),則下列說法不正確的是( )

A.其圖象開口向上,且始終與軸有兩個(gè)不同的交點(diǎn)

B.無論取何實(shí)數(shù),其圖象始終過定點(diǎn)

C.其圖象對(duì)稱軸的位置沒有確定,但其形狀不會(huì)因的取值不同而改變

D.函數(shù)的最小值大于

【答案】D

【解析】

利用判別式的符號(hào)可判斷出A選項(xiàng)的正誤;令求出值,可判斷出B選項(xiàng)的正誤;根據(jù)拋物線的形狀由首項(xiàng)系數(shù)決定可判斷出C選項(xiàng)的正誤;求出二次函數(shù)的最小值,利用不等式的性質(zhì)可判斷出D選項(xiàng)的正誤.

對(duì)于A選項(xiàng),函數(shù)對(duì)應(yīng)的二次方程,其判別式恒成立,故拋物線始終與軸有兩個(gè)不同的交點(diǎn),故A選項(xiàng)正確;

對(duì)于B選項(xiàng),當(dāng)時(shí),函數(shù)值,故B選項(xiàng)正確;

對(duì)于C選項(xiàng),拋物線的形狀只與二次項(xiàng)系數(shù)有關(guān),無論取何實(shí)數(shù),該函數(shù)圖象的形狀都與的圖象形狀相同,故C選項(xiàng)正確;

對(duì)于D選項(xiàng),函數(shù)的最小值,其中,所以,故D選項(xiàng)錯(cuò)誤.故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax(lnx﹣1)﹣x2(a∈R)恰有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 . (Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)若不等式lnx1+λlnx2>1+λ恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的偽代碼,輸出i的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】合肥一中、六中為了加強(qiáng)交流,增進(jìn)友誼,兩校準(zhǔn)備舉行一場足球賽,由合肥一中版畫社的同學(xué)設(shè)計(jì)一幅矩形宣傳畫,要求畫面面積為,畫面的上、下各留空白,左、右各留空白.

(1)如何設(shè)計(jì)畫面的高與寬的尺寸,才能使宣傳畫所用紙張面積最小?

(2)設(shè)畫面的高與寬的比為,且,求為何值時(shí),宣傳畫所用紙張面積最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分分)

已知圓,過點(diǎn)作直線交圓、兩點(diǎn).

)當(dāng)經(jīng)過圓心時(shí),求直線的方程.

)當(dāng)直線的傾斜角為時(shí),求弦的長.

)求直線被圓截得的弦長時(shí),求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只袋中裝有編號(hào)為1,2,3,…,n的n個(gè)小球,n≥4,這些小球除編號(hào)以外無任何區(qū)別,現(xiàn)從袋中不重復(fù)地隨機(jī)取出4個(gè)小球,記取得的4個(gè)小球的最大編號(hào)與最小編號(hào)的差的絕對(duì)值為ξn , 如ξ4=3,ξ5=3或4,ξ6=3或4或5,記ξn的數(shù)學(xué)期望為f(n).
(1)求f(5),f(6);
(2)求f(n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的程序框圖的功能是(

A.求數(shù)列{ }的前10項(xiàng)的和
B.求數(shù)列{ }的前11項(xiàng)的和
C.求數(shù)列{ }的前10項(xiàng)的和
D.求數(shù)列{ }的前11項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),().

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求證:當(dāng)時(shí),對(duì)于任意,總有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣1+ (a∈R,e為自然對(duì)數(shù)的底數(shù)).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)求函數(shù)f(x)的極值;
(3)當(dāng)a=1的值時(shí),若直線l:y=kx﹣1與曲線y=f(x)沒有公共點(diǎn),求k的最大值.

查看答案和解析>>

同步練習(xí)冊答案