已知雙曲線方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,右焦點(diǎn)為F,點(diǎn)A(0,b),線段AF交雙曲線于點(diǎn)B,且
AB
=2
BF
,則雙曲線的離心率為( 。
分析:利用右焦點(diǎn)為F,點(diǎn)A(0,b),線段AF交雙曲線于點(diǎn)B,且
AB
=2
BF
,確定B的坐標(biāo),代入雙曲線方程,化簡可求雙曲線的離心率.
解答:解:設(shè)B(x,y),
∵右焦點(diǎn)為F,點(diǎn)A(0,b),線段AF交雙曲線于點(diǎn)B,且
AB
=2
BF

∴(x,y-b)=2(c-x,-y),
x=
2c
3
,y=
b
3
,
代入雙曲線方程,可得
4c2
9
a2
-
b2
9
b2
=1
,
c
a
=
10
2

故選A.
點(diǎn)評:本題考查向量知識的運(yùn)用,考查雙曲線的離心率,利用向量知識確定B的坐標(biāo)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為
x
2
 
4
+
y
2
 
3
=1
,雙曲線
x
2
 
a
2
 
-
y
2
 
b
2
 
=1(a>0,b>0)
的焦點(diǎn)是橢圓的頂點(diǎn),頂點(diǎn)是橢圓的焦點(diǎn),則雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭一模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與拋物線y2=8x有 一個公共的焦點(diǎn)F,且兩曲線的一個交點(diǎn)為P,若|PF|=5,則雙曲線方程為
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線方程為x2-
y2
4
=1
,過P(1,0)的直線L與雙曲線只有一個公共點(diǎn),則L的條數(shù)共有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 高二數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:013

已知雙曲線方程為x2=1,過P(1,0)的直線L與雙曲線只有一個公共點(diǎn),則L的條數(shù)共有

[  ]

A.4條

B.3條

C.2條

D.1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線方程為x2-
y2
4
=1
,過P(1,0)的直線L與雙曲線只有一個公共點(diǎn),則L的條數(shù)共有( 。
A.4條B.3條C.2條D.1條

查看答案和解析>>

同步練習(xí)冊答案