已知某圓的極坐標(biāo)方程是,求:
(1)求圓的普通方程和一個(gè)參數(shù)方程;
(2)圓上所有點(diǎn)的最大值和最小值.

(1)即圓的普通方程為:。 參數(shù)方程為:    (為參數(shù)) ;(2)最大值為:9,最小值為:1.

解析試題分析:(1)圓的普通方程與圓的極坐標(biāo)方程之間的轉(zhuǎn)換關(guān)系在于圓上一點(diǎn)與極徑,極角間的關(guān)系:,圓的普通方程與圓的參數(shù)方程的關(guān)系也在于此,即圓上一點(diǎn)與圓半徑,圓上點(diǎn)與圓心連線與軸正向夾角的關(guān)系:;(2)利用圓的參數(shù)方程,將轉(zhuǎn)化為關(guān)于的三角函數(shù)關(guān)系求最值,注意這里處理要注意用換元法(不同于一般三角函數(shù)處理方法,即轉(zhuǎn)化為的形式),得到三角函數(shù)與二次函數(shù)的復(fù)合函數(shù).
試題解析:
由圓上一點(diǎn)與極徑,極角間的關(guān)系:,
,

即圓的普通方程為:。                               2分
可得圓心坐標(biāo)為 ,半徑  
所以其參數(shù)方程為:    (為參數(shù)) 。                         4分
由圓上一點(diǎn)與圓的參數(shù)方程的關(guān)系得:
          5分
,, 則.
所以                                       6分
當(dāng)時(shí),最小值是1;                                                    8分
當(dāng)時(shí),最大值是9.                                                     10分
考點(diǎn):(1)圓的極坐標(biāo)方程與圓的參數(shù)方程;(2)參數(shù)方程求最值應(yīng)用。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.求:(1)求圓的直角坐標(biāo)方程;
(2)若是直線與圓面≤的公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)把下列的極坐標(biāo)方程化為直角坐標(biāo)方程(并說明對(duì)應(yīng)的曲線):
          ②
(2)把下列的參數(shù)方程化為普通方程(并說明對(duì)應(yīng)的曲線):
        ④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸為極軸建立極坐標(biāo)系,曲線的方程為為參數(shù)),曲線的極坐標(biāo)方程為,若曲線相交于、兩點(diǎn).
(1)求的值;
(2)求點(diǎn)、兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標(biāo)方程為 
(1)求曲線的普通方程;
(2)求直線被曲線截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

長(zhǎng)為3的線段兩端點(diǎn)A,B分別在x軸正半軸和y軸的正半軸上滑動(dòng),,點(diǎn)P的軌跡為曲線C.
(1)以直線AB的傾斜角為參數(shù),求曲線C的參數(shù)方程;
(2)求點(diǎn)P到點(diǎn)D距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的參數(shù)方程是為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;
(2)已知點(diǎn)、的極坐標(biāo)分別是、,直線與曲線相交于、兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題


把圓的普通方程x2+(y-2)2=4化為極坐標(biāo)方程為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

(坐標(biāo)系與參數(shù)方程選講) 
在極坐標(biāo)系中,點(diǎn)到直線的距離為      

查看答案和解析>>

同步練習(xí)冊(cè)答案