D
解析:
分析:a可看作是指數(shù)函數(shù)y=0.6x,當(dāng)x=2時的函數(shù)值,因為y=0.6x為單調(diào)遞減的函數(shù),所以0<a<1;
同理由y=2x,得單調(diào)性可知c>1;
由y=log2x單調(diào)性可知b<0.由此可得abc的大小關(guān)系.
解答:a可看作是指數(shù)函數(shù)y=0.6x,當(dāng)x=2時的函數(shù)值,y=0.6x為單調(diào)遞減的函數(shù),故0<a<1;
同理c可看作是指數(shù)函數(shù)y=2x,當(dāng)x=0.6時的函數(shù)值,y=2x為單調(diào)遞增的函數(shù),故c>1;
對于b,可看作是對數(shù)函數(shù)y=log2x,當(dāng)x=0.6時的函數(shù)值,y=log2x為單調(diào)遞增的函數(shù),故b<0.綜上可知有b<a<c成立.故選D.
點評:本題為數(shù)值的大小的比較,利用函數(shù)的單調(diào)性得出各個數(shù)的范圍是解決問題的關(guān)鍵,屬基礎(chǔ)題.