精英家教網 > 高中數學 > 題目詳情
18.如圖,在直角坐標系中,設橢圓的左右兩個焦點分別為. 過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.

(1) 求橢圓的方程;

(2) 設橢圓的一個頂點為,直線交橢圓于另一點,求△的面積.

(1) [解法一] 軸,的坐標為.   

由題意可知  得

所求橢圓方程為.   

[解法二]由橢圓定義可知

. 由題意,.    

又由可知  ,,

,又,得.

 橢圓的方程為.  

[解] (2) 直線的方程為.   

 得點的縱坐標為.  

.   

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在直角坐標系中,射線OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),
過點P(1,0)作直線分別交射線OA、OB于A、B點.
①當AB的中點為P時,求直線AB的方程;
②當AB的中點在直線y=
1
2
x上時,求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在直角坐標系中,已知△ABC的三個頂點的坐標,求:
(1)直線AB的一般式方程;
(2)AC邊上的高所在直線的斜截式方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在直角坐標系中,直線y=6-x與y=
4x
(x>0)
的圖象相交于點A、B,設點A的坐標為(x1,y1),那么長為x1,寬為y1的矩形面積和周長分別為
4,12
4,12

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在直角坐標系中,A,B,C三點在x軸上,原點O和點B分別是線段AB和AC的中點,已知AO=m(m為常數),平面上的點P滿足PA+PB=6m.
(1)試求點P的軌跡C1的方程;
(2)若點(x,y)在曲線C1上,求證:點(
x
3
y
2
2
)
一定在某圓C2上;
(3)過點C作直線l,與圓C2相交于M,N兩點,若點N恰好是線段CM的中點,試求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在直角坐標系中,中心在原點,焦點在x軸上的橢圓G的離心率為
15
4
,左頂點為A(-4,0).圓O′:(x-2)2+y2=
4
9

(Ⅰ)求橢圓G的方程;
(Ⅱ)過M(0,1)作圓O′的兩條切線交橢圓于E、F,判斷直線EF與圓的位置關系,并證明.

查看答案和解析>>

同步練習冊答案