直線y=x+2經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點和一個頂點,則橢圓的離心率為
 
分析:由題意可知直線y=x+2與x軸的交點正好是橢圓的左焦點,直線與y軸的交點正是橢圓的上頂點.進而根據(jù)直線與x軸和y軸的交點即可求得b和c,根據(jù)a=
b2+c2
,最后可得離心率e.
解答:解:∵直線y=x+2與y軸的交點為(0,2),與x軸的交點為(-2,0),故可知橢圓的短軸頂點為(0,2),焦點坐標為(-2,0),即b=2,c=2
∴a=
b2+c2
=2
2

∴e=
c
a
=
2
2

故答案為:
2
2
點評:本題主要考查了橢圓的簡單性質(zhì)及直線與橢圓的關系.屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013年湖南省懷化市高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

已知橢圓過點,離心率,若點M(x,y)在橢圓C上,則點稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年黑龍江省哈爾濱三中高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓過點,離心率,若點M(x,y)在橢圓C上,則點稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年黑龍江省哈爾濱三中高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓過點,離心率,若點M(x,y)在橢圓C上,則點稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

同步練習冊答案