已知函數(shù)f(x)=
x2-2x,x≤0
ex-1,x>0
,若f(x)≥ax,則a的取值范圍是
 
考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先,畫出該函數(shù)的圖象,然后,根據(jù)圖象,確定a的取值范圍.
解答:解:函數(shù)f(x)=
x2-2x,x≤0
ex-1,x>0
的圖象如下圖所示:

當(dāng)x≤0時(shí),f(x)=x2-2x,
∴f′(x)=2x-2,
∴f′(0)=-2,
故當(dāng)x≤0時(shí),此時(shí)a≥-2,
當(dāng)x>0時(shí),f(x)=ex-1,
∴f′(x)=ex
∴f′(0)=1,
故當(dāng)x>0時(shí),此時(shí)a≤1,
綜上,a的取值范圍為[-2,1].
故答案為:[-2,1].
點(diǎn)評(píng):本題重點(diǎn)考查函數(shù)的單調(diào)性、函數(shù)的基本性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)在定義域內(nèi)為奇函數(shù)的是(  )
A、y=x+
1
x
B、y=xsinx
C、y=|x|-1
D、y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在用二分法求方程
x
2
 
-2x-1=0
的一個(gè)近似解時(shí),已將一根鎖定在區(qū)間(2,3)內(nèi),則下一步可斷定該根所在的區(qū)間為( 。
A、(2.4,3)
B、(2,2.4)
C、(2,2.5)
D、(2.5,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-3,x≥10
f(f(x+5)),x<10
,則f(6)=(  )
A、7B、10C、11D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex-1  ,x≥0
-x2-2x,  x<0
,若關(guān)于x的方程f(x)=|x-a|有三個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
-cosπx,x>0
f(x+1)-
1
2
,x≤0
,則f(
4
3
)+f(-
3
4
)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1(x≤0)
f(x-1)+1(x>0)
,把函數(shù)g(x)=f(x)-x的零點(diǎn)按從小到的順序排列成一個(gè)數(shù)列,則該數(shù)列的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一物體的運(yùn)動(dòng)方程如下:s=
t2+18(t≥4)
32+2(t-3)2(0≤t<4)
,其中s單位:m;t單位:s.求:
(1)物體在t∈[2,3]時(shí)的平均速度.
(2)物體在t=5時(shí)的瞬時(shí)速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-
3
y=0被圓x2+y2-8x+4=0截得的弦長(zhǎng)為(  )
A、2
2
B、4
C、4
2
D、4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案