【題目】已知在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),以軸為非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)求圓的普通方程與極坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,求圓上的點(diǎn)到直線的最大距離.

【答案】(1)普通方程為,極坐標(biāo)方程為.(2)5.

【解析】試題分析:(1)先根據(jù)同角三角函數(shù)關(guān)系消參數(shù)可得圓的普通方程,再利用將直角坐標(biāo)方程化為極坐標(biāo)方程(2)先根據(jù)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程,再根據(jù)圓的幾何條件得圓上的點(diǎn)到直線的最大距離為圓心到直線距離減去半徑,最后根據(jù)點(diǎn)到直線距離公式求最值

試題解析:(1)圓的圓心,半徑,

則普通方程為,

其極坐標(biāo)方程為,

2)由,

化為,即,

圓心到直線的距離為

故圓上的點(diǎn)到直線的最大距離為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】哈三中群力校區(qū)高二、六班同學(xué)用隨機(jī)抽樣的辦法對所在校區(qū)老師的飲食習(xí)慣進(jìn)行了一次調(diào)查, 飲食指數(shù)結(jié)果用莖葉圖表示如圖, 圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.

(1)完成下列列聯(lián)表:

能否有的把握認(rèn)為老師的飲食習(xí)慣與年齡有關(guān)?

(2)從調(diào)查的結(jié)果中飲食指數(shù)在的老師內(nèi)任選3名老師, 設(shè)“選到的三位老師飲食指數(shù)之和不超過105”為事件, 求事件發(fā)生的概率;

(3)為了給食堂提供老師的飲食信息, 根據(jù)(1)的結(jié)論,能否有更好的抽樣方法來估計(jì)老師的飲食習(xí)慣, 并說明理由.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賽季甲、乙兩名籃球運(yùn)動員每場比賽得分的原始記錄如下:

甲運(yùn)動員得分:13,51,23,8,26,38,16,33,14,28,39;

乙運(yùn)動員得分:49,24,12,31,50,31,44,36,15,37,25,36,39.

(1)用十位數(shù)為莖,在答題卡中畫出原始數(shù)據(jù)的莖葉圖;

(2)用分層抽樣的方法在乙運(yùn)動員得分十位數(shù)為 2,3,4 的比賽中抽取一個(gè)容量為 5 的樣本,從該樣本中隨機(jī)抽取 2 場,求其中恰有 1 場得分大于 40 分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線.

1)求證:對,直線與圓總有兩個(gè)交點(diǎn);

2)設(shè)直線與圓交于點(diǎn),若,直線的傾斜角;

3)設(shè)直線與圓交于點(diǎn),若定點(diǎn)滿足,求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓作圓的切線,切點(diǎn)為在第二象限).

1)求的正弦值;

2)已知點(diǎn),過點(diǎn)分別作兩圓切線,若切線長相等,求關(guān)系;

3)是否存在定點(diǎn),使過點(diǎn)有無數(shù)對相互垂直的直線滿足,且它們分別被圓、圓所截得的弦長相等?若存在,求出所有的點(diǎn);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,平面ABCD,且,點(diǎn)E為線段PD的中點(diǎn).

1)求證:平面AEC;

2)求證:平面PCD

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】語音交互是人工智能的方向之一,現(xiàn)在市場上流行多種可實(shí)現(xiàn)語音交互的智能音箱,它們可以通過語音交互滿足人們的部分需求.經(jīng)市場調(diào)查,某種新型智能音箱的廣告費(fèi)支出x(萬元)與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):

x

1

4

5

6

9

y

20

35

50

65

80

1)求y關(guān)于x的線性回歸方程(數(shù)據(jù)精確到0.01);

2)利用(1)中的回歸方程,預(yù)測廣告費(fèi)支出10萬元時(shí)的銷售額.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .

(1)若函數(shù)上單調(diào)遞增,求的取值范圍;

(2)設(shè),點(diǎn)是曲線的一個(gè)交點(diǎn),且這兩曲線在點(diǎn)處的切線互相垂直,證明:存在唯一的實(shí)數(shù)滿足題意,且.

查看答案和解析>>

同步練習(xí)冊答案