【題目】已知橢圓C1y21的左右頂點(diǎn)是雙曲線(xiàn)C2的頂點(diǎn),且橢圓C1的上頂點(diǎn)到雙曲線(xiàn)C2的漸近線(xiàn)的距離為

(1)求雙曲線(xiàn)C2的方程;

(2)若直線(xiàn)與C1相交于M1,M2兩點(diǎn),與C2相交于Q1,Q2兩點(diǎn),且5,求|M1M2|的取值范圍.

【答案】(1)y21;(2)|M1M2|∈(0]

【解析】

1)由橢圓的頂點(diǎn)可得,求出雙曲線(xiàn)的漸近線(xiàn)方程,運(yùn)用點(diǎn)到直線(xiàn)的距離公式可得,進(jìn)而得到雙曲線(xiàn)的方程;

2)設(shè)出直線(xiàn)的方程,聯(lián)立雙曲線(xiàn)方程,消去,運(yùn)用韋達(dá)定理和判別式大于0,結(jié)合向量的數(shù)量積的坐標(biāo)運(yùn)算,求得的關(guān)系式,再由直線(xiàn)方程和橢圓的方程聯(lián)立,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,即可求得的取值范圍.

(1)由橢圓C1y21的左右頂點(diǎn)為(,0),(,0),可得a23,

又橢圓C1的上頂點(diǎn)(01)到雙曲線(xiàn)C2的漸近線(xiàn)bxay0的距離為,

由點(diǎn)到直線(xiàn)的距離公式有可得b1

所以雙曲線(xiàn)C2的方程為y21;

(2)易知直線(xiàn)l的斜率存在,設(shè)直線(xiàn)l的方程為ykx+m,

代入y21,消去y并整理得(13k2x26kmx3m230,

要與C2相交于兩點(diǎn),則應(yīng)有①,

設(shè)Q1x1y1)、Q2x2,y2),則有:x1+x2x1x2

x1x2+y1y2x1x2+kx1+m)(kx2+m)=(1+k2x1x2+kmx1+x2+m2,

5,所以有[1+k2)(﹣3m23+6k2m2+m213k2]=﹣5

整理得m219k2②,

ykx+m,代入y21,消去y并整理得:(1+3k2x2+6kmx+3m230,

要有兩交點(diǎn),則36k2m241+3k2)(3m23)>03k2+1m2

由①②③有:0k2

設(shè)M1x3,y3)、M2x4y4),則有:x3+x4x3x4

所以|M1M2|,

m219k2,代入有:|M1M2||M1M2|

|M1M2|12,令tk2,則t∈(0],

ftft,又t∈(0,]

所以f't)>0t∈(0,]內(nèi)恒成立,故函數(shù)ft)在t∈(0,]內(nèi)單調(diào)遞增,

ft)∈(0,],則有|M1M2|∈(0]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)為提高生產(chǎn)效率,開(kāi)展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是

A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需要的時(shí)間至少80分鐘

B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高

C. 這40名工人完成任務(wù)所需時(shí)間的中位數(shù)為80

D. 無(wú)論哪種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需要的時(shí)間都是80分鐘.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,居民小區(qū)要建一座八邊形的休閑場(chǎng)所,它的主體造型平面圖是由兩個(gè)相同的矩形構(gòu)成的面積為的十字形地域,計(jì)劃在正方形上建一座花壇,造價(jià)為/;在四個(gè)相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價(jià)為/;再在四個(gè)空角(圖中四個(gè)三角形,如)上鋪草坪,造價(jià)為/

1)設(shè)總造價(jià)為(單位:元),長(zhǎng)為(單位:),試求出關(guān)于的函數(shù)關(guān)系式,并求出定義域;

2)當(dāng)長(zhǎng)取何值時(shí),總造價(jià)最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線(xiàn)C1a0,b0)的左右焦點(diǎn)為F1,F2|F1F2|2c),以坐標(biāo)原點(diǎn)O為圓心,以c為半徑作圓A,圓A與雙曲線(xiàn)C的一個(gè)交點(diǎn)為P,若三角形F1PF2的面積為a2,則C的離心率為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的焦距為,短半軸的長(zhǎng)為2,過(guò)點(diǎn)P(-2,1)且斜率為1的直線(xiàn)l與橢圓C交于A,B兩點(diǎn)

(1)求橢圓C的方程

(2)求弦AB的長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱(chēng)之為鱉臑.首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)的某展館棚頂一角的鋼結(jié)構(gòu)可以抽象為空間圖形陽(yáng)馬.如圖所示,在陽(yáng)馬中,底面

1)若,斜梁與底面所成角為,求立柱的長(zhǎng)(精確到);

2)證明:四面體為鱉臑;

3)若,,,為線(xiàn)段上一個(gè)動(dòng)點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷(xiāo)售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)50元;未售出的產(chǎn)品,每盒虧損30元根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示,該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了160盒該產(chǎn)品,以單位:盒,表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,單位:元表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷(xiāo)該產(chǎn)品的利潤(rùn)

根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量x的平均數(shù)和眾數(shù);

將y表示為x的函數(shù);

根據(jù)直方圖估計(jì)利潤(rùn)不少于4800元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A地的天氣預(yù)報(bào)顯示,A地在今后的三天中,每一天有強(qiáng)濃霧的概率為,現(xiàn)用隨機(jī)模擬的方法估計(jì)這三天中至少有兩天有強(qiáng)濃霧的概率,先利用計(jì)算器產(chǎn)生之間整數(shù)值的隨機(jī)數(shù),并用0,1,2,3,4,5,6表示沒(méi)有強(qiáng)濃霧,用7,8,9表示有強(qiáng)濃霧,再以每3個(gè)隨機(jī)數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機(jī)數(shù):

402  978  191  925  273  842  812  479  569  683

231  357  394  027  506  588  730  113  537  779

則這三天中至少有兩天有強(qiáng)濃霧的概率近似為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見(jiàn)部分如圖.

1求分?jǐn)?shù)在的頻數(shù)及全班人數(shù);

2求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;

3若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案