如圖,在四棱錐PABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點.
(1)求直線PB與平面POC所成角的余弦值;
(2)求B點到平面PCD的距離;
(3)線段PD上是否存在一點Q,使得二面角QACD的余弦值為?若存在,求出的值;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面為正方形,側(cè)面底面.為等腰直角三角形,且.,分別為底邊和側(cè)棱的中點.
(1)求證:∥平面;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形所在的平面和平面互相垂直,等腰梯形中,∥,=2,,,,分別為,的中點,為底面的重心.
(1)求證:∥平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,,點M在線段EC上(除端點外)
(1)當(dāng)點M為EC中點時,求證:平面;
(2)若平面與平面ABF所成二面角為銳角,且該二面角的余弦值為時,求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體ABCDA1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分別是棱AB,BC上的點,且EB=FB=1.
(1)求異面直線EC1與FD1所成角的余弦值;
(2)試在面A1B1C1D1上確定一點G,使DG⊥平面D1EF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明:PA∥平面BDE;
(2)求二面角B-DE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,正方形與矩形所在平面互相垂直,,點為的中點.
(1)求證:∥平面;
(2)求證:;
(3)在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com