(文)已知函數(shù)f(x)=-x3ax2bxc圖像上的點(diǎn)P(1,-2)處的切線方程為y=-3x+1.

(1)若函數(shù)f(x)在x=-2時(shí)有極值,求f(x)的表達(dá)式;

(2)函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

 

【答案】

  f(x)=-x3-2x2+4x-3.  

【解析】[4+∞).

(文)f′(x)=-3x2+2axb,                       2分

因?yàn)楹瘮?shù)f(x)在x=1處的切線斜率為-3,

所以f′(1)=-3+2ab=-3,                     1分                

f(1)=-1+abc=-2得abc=-1.               2分

(1)函數(shù)f(x)在x=-2時(shí)有極值,所以f′(-2)=-12-4ab=0       3分

解得a=-2,b=4,c=-3                       5分

所以f(x)=-x3-2x2+4x-3.                     6分

(2)因?yàn)楹瘮?shù)f(x)在區(qū)間[-2,0]上單調(diào)遞增,所以導(dǎo)函數(shù)f′(x)=-3x2bxb在區(qū)間[-2,0]上的值恒大于或等于零,                        8分

則,得b≥4,               10分

所以實(shí)數(shù)b的取值范圍為[4+∞).                   12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)已知函數(shù)f(x)=2x-
12|x|

(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0對(duì)于t∈[2,3]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•松江區(qū)模擬)(文)已知函數(shù)f(x)=ax2-2
4+2b-b2
x
g(x)=-
1-(x-a)2
,(a,b∈R)
(Ⅰ)當(dāng)b=0時(shí),若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)求滿足下列條件的所有實(shí)數(shù)對(duì)(a,b):當(dāng)a是整數(shù)時(shí),存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(Ⅲ)對(duì)滿足(Ⅱ)的條件的一個(gè)實(shí)數(shù)對(duì)(a,b),試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠2k-2,k∈N}上的函數(shù)h(x),使當(dāng)x∈(-2,0)時(shí),h(x)=f(x),當(dāng)x∈D時(shí),h(x)取得最大值的自變量的值構(gòu)成以x0為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)已知函數(shù)f(x)=
1
3
x3-
1
2
x2
,其定義域?yàn)閇-2,t](t>-2),設(shè)f(-2)=m,f(t)=n.
(Ⅰ)試確定t的取值范圍,使得函數(shù)f(x)在[-2,t]上為單調(diào)函數(shù);
(Ⅱ)試判斷m,n的大小并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)已知函數(shù)f(x)=
3
sin2x+2cos2x+2

(Ⅰ)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)0≤x≤
π
2
時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)已知函數(shù)f(x)=
x2-x,(x≤0)
1+2lgx,(x>0)
,f(x)=2,則x=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案