已知棱長為1的正方體ABCD-A1B1C1D1,直線BD與平面A1BC1所成角的余弦值為
 
分析:由已知中棱長為1的正方體ABCD-A1B1C1D1,我們以A點(diǎn)為坐標(biāo)原點(diǎn),以AB,AD,AA1方向?yàn)閄、Y、Z軸正方向建立空間坐標(biāo)系,分別求出直線BD的方向向量及平面A1BC1的法向量,代入向量夾角公式即可求出直線BD與平面A1BC1所成角的余弦值.
解答:解:以A點(diǎn)為坐標(biāo)原點(diǎn),以AB,AD,AA1方向?yàn)閄、Y、Z軸正方向建立空間坐標(biāo)系,
∵正方體ABCD-A1B1C1D1的棱長為1
BD
=(-1,1,0),平面A1BC1的一個(gè)法向量為
B1D
=(-1,1,-1)
∵cos
BD
B1D
=
BD
B1D
|
BD
|•|
B1D
|
=
6
3

設(shè)直線BD與平面A1BC1所成角為θ,
則cosθ=sin
BD
,
B1D
=
3
3

故答案為:
3
3
點(diǎn)評:本題考查的知識(shí)點(diǎn)是直線與平面所成的角,其中根據(jù)已知條件,建立空間坐標(biāo)系,將線面夾角問題轉(zhuǎn)化為向量的夾角問題,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1中,E、F分別是B1C1和C1D1的中點(diǎn),點(diǎn)A1到平面DBEF的距離
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)已知棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別是棱BB1,DD1上的動(dòng)點(diǎn),且BE=D1F=λ(0<λ≤
1
2
)
.設(shè)EF與AB所成的角為α,與BC所成的角為β,則α+β的最小值(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知棱長為1的正方體ABCD-A1B1C1D1
(1)線段A1B上是否存在一點(diǎn)P,使得A1B⊥平面PAC?若存在,確定P點(diǎn)的位置,若不存在,說明理由;
(2)點(diǎn)P在A1B上,若二面角C-AP-B的大小是arctan2,求BP的長;
(3)Q點(diǎn)在對角線B1D,使得A1B∥平面QAC,求
B1QQD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1,O為底ABCD對角線的交點(diǎn).
(Ⅰ)求證:A1C⊥平面AB1D1; 
(Ⅱ)求A1到平面AB1D1的距離.

查看答案和解析>>

同步練習(xí)冊答案