已知動點到兩定點、的距離和為8,且,線段的的中點為,過點的所有直線與點的軌跡相交而形成的線段中,長度為整數(shù)的有
A.B.C.D.
D

試題分析:因為動點到兩定點的距離和為8,所以點P的軌跡為以A,B為焦點的橢圓,而且可以求出該橢圓的長軸長為8,短軸長為4,所以過點的所有直線與點的軌跡相交而形成的線段中,長度為整數(shù)4,5,6的各有兩條,所以共有6+2=8條.
點評:解決此問題的關鍵是找出點P的軌跡為橢圓,進而利用橢圓的性質(zhì)求解,這種轉(zhuǎn)化的思想在解題時經(jīng)常用到.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為橢圓的焦點,且直線與橢圓相切.
(Ⅰ)求橢圓方程;
(Ⅱ)過的直線交橢圓于、兩點,求△的面積的最大值,并求此時直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若方程表示橢圓,則的取值范圍是______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
(Ⅰ)設橢圓的半焦距,且成等差數(shù)列,求橢圓的方程;
(Ⅱ)設(1)中的橢圓與直線相交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓的左焦點作直線交橢圓于兩點,是橢圓右焦點,則的周長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,如圖,已知橢圓C的上、下頂點分別為A、B,點P在橢圓C上且異于點A、B,直線AP、PB與直線ly=-2分別交于點M、N.

(1)設直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;
(2)求線段MN長的最小值;
(3)當點P運動時,以MN為直徑的圓是否經(jīng)過某定點?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的兩焦點是,則其焦距長為            ,若點是橢圓上一點,且 是直角三角形,則的大小是            .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓C:的上頂點坐標為,離心率為.
(Ⅰ)求橢圓方程;
(Ⅱ)設P為橢圓上一點,A為左頂點,F(xiàn)為橢圓的右焦點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓的離心率為,焦點在x軸上且長軸長為30.若曲線上的點到橢圓的兩個焦點的距離的差的絕對值等于10,則曲線的標準方程為(     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案