設(shè)實數(shù)x,y滿足約束條件
x-y-2≤0
x+2y-5≥0
y≤2
,則u=
2xy
x2+y2
的取值范圍是( 。
A、[
3
10
,1)
B、[
1
2
,1]
C、[
3
10
,
1
2
]
D、[
3
5
,1]
分析:本題考查的知識點是簡單線性規(guī)劃的應用,我們要先畫出滿足約束條件
x-y-2≤0
x+2y-5≥0
y≤2
的平面區(qū)域,然后分析z=
y
x
的幾何意義,進而給出 則u=
2xy
x2+y2
的取值范圍.
解答:精英家教網(wǎng)解:畫出滿足約束條件
x-y-2≤0
x+2y-5≥0
y≤2
的平面區(qū)域,
u=
2xy
x2+y2
=
2
y
x
1+ (
y
x
) 2

設(shè)z=
y
x

表示區(qū)域內(nèi)點與(0,0)點連線的斜率
又∵當x=1,y=2時,z=2,當x=3,y=1時,z=
1
3

u=
2z
1+z2
=
2
z+
1
z
的取值范圍為[
3
5
,1]

故選D
點評:平面區(qū)域的最值問題是線性規(guī)劃問題中一類重要題型,在解題時,關(guān)鍵是正確地畫出平面區(qū)域,分析表達式的幾何意義,然后結(jié)合數(shù)形結(jié)合的思想,分析圖形,找出滿足條件的點的坐標,即可求出答案.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)實數(shù)x,y滿足約束條件 
2x-y+2≥0
8x-y-4≤0
x≥0,y≥0
,若目標函數(shù)z=abx+y(a>0,b>0)的最大值為8,則
1
a2
+
1
b2
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)實數(shù)x,y滿足約束條件
x-y-2≤0
x+3y-6≥0
y≤2
,則z=
y
x
的最小值為
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•成都模擬)設(shè)實數(shù)x、y滿足約束條件,
y≤x
x+y≤
y≥-1
1
,則z=3x+y的最大值是
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濱州一模)設(shè)實數(shù)x,y滿足約束條件
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,則目標函數(shù)z=x+2y的最大值為
25
25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)實數(shù)x、y滿足約束條件:
x≥0
x≤y
x+2y≤3
則z=2x-y的最大值是
1
1

查看答案和解析>>

同步練習冊答案