(本小題滿分12分)
如圖,在三棱錐P-ABC中,PA=PC,∠APC=∠ACB=90°,∠BAC=30°,平面PAC⊥平面ABC.

(1)求證:平面PAB⊥平面PBC;
(2)若PA=2,求三棱錐P-ABC的體積.
1)∵ 面PAC⊥面ABC,BC⊥AC,∴  BC⊥面PAC,BC⊥PA.又PA⊥PC,
∴  PA⊥面PBC.∴  PAB⊥面PBC.
∴ 面PAB⊥PBC
(2)∵  PA=2,則,
∴ ,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(本小題滿分12分)
一個(gè)幾何體是由圓柱三棱錐組合而成,點(diǎn)、、在圓的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖所示,其中,,

(1)求證:;
(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四棱錐的底面為直角梯形,底面,且,的中點(diǎn)。
(Ⅰ)證明:面
(Ⅱ)求所成角的余弦值;
(Ⅲ)求面與面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知矩形與正三角形所在的平面互相垂直, 分別為棱、的中點(diǎn),,,

(1)證明:直線平面;
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在棱長(zhǎng)為1的正方體中,分別是的中點(diǎn),在棱上,且,H的中點(diǎn),應(yīng)用空間向量方法求解下列問(wèn)題.

(1)求證:;
(2)求EF與所成的角的余弦;
(3)求FH的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱椎P-ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AB=1,PD與平面ABCD所成的角是300,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng)。

(1)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說(shuō)明理由;
(2)證明:無(wú)論點(diǎn)E在邊BC的何處,都有AF⊥PE;
(3)求當(dāng)BE的長(zhǎng)為多少時(shí),二面角P-DE-A的大小為450。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在棱長(zhǎng)均為2的正四棱錐中,點(diǎn)E為PC的中點(diǎn),則下列命題正確的是(  )(正四棱錐即底面為正方形,四條側(cè)棱長(zhǎng)相等,頂點(diǎn)在底面上的射影為底面的中心的四棱錐)
A.,且直線BE到面PAD的距離為
B.,且直線BE到面PAD的距離為
C.,且直線BE與面PAD所成的角大于
D.,且直線BE與面PAD所成的角小于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

⊿ABC中,AB=AC=5,BC=6,PA平面ABC,則點(diǎn)P到BC的距離是(  )
A. 4B.3C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本大題8分)已知正方體,求:

(1)異面直線所成的角;
(2)證明:直線//平面C
(3)二面角D— AB—C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案