銳角三角形ABC中,關(guān)于向量夾角的說法正確的是( 。
分析:由兩向量夾角定義知,
AB
BC
的夾角是180°-∠B,
AB
AC
夾角是∠A,
AC
BC
夾角是∠C,
AC
CB
的夾角是180°-∠C,由此可得結(jié)論.
解答:解:由兩向量夾角定義知,
AB
BC
的夾角是180°-∠B,
AB
AC
夾角是∠A,
AC
BC
夾角是∠C,
AC
CB
的夾角是180°-∠C.
故選 B.
點(diǎn)評(píng):本題主要考查兩個(gè)向量的夾角的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在銳角三角形ABC中,BC=1,AB=
2
sin(π-B)=
14
4

(1)求AC的值;
(2)求sin(A-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(8cosα,2),
b
=(sinα-cosα,3),設(shè)函數(shù)f(α)=
a
b

(1)求函數(shù)f(α)的最大值;
(2)在銳角三角形ABC中,角A、B、C的對(duì)邊分別問a,b,c,f(A)=6,且△ABC的面積為3,b+c=2+3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角三角形ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,且滿足
3
a-2bsinA=0.
(Ⅰ)求角B的大;
(Ⅱ)若b=
7
,c=2,求
AB
AC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•蚌埠二模)在銳角三角形ABC中設(shè)x=(1+sinA)(1+sinB),y=(1+cosA)(1+cosB),則x、y大小關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•資陽二模)在銳角三角形ABC中,a、b、c分別是角A、B、C的對(duì)邊,且
3
a-2csinA=0.
(Ⅰ)求角C的大小;
(Ⅱ)若c=2,求a+b的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案