精英家教網 > 高中數學 > 題目詳情
已知點G是△ABC的重心,A(0,-1),B(0,1).在x軸上有一點M,滿足||=||,(λ∈R)(若△ABC的頂點坐標為?A(x1,y1),B(x2,y2),C(x3,y3),則該三角形的重心坐標為G(,)).

(1)求點C的軌跡E的方程;

(2)設(1)中曲線E的左、右焦點分別為F1、F2,過點F2的直線l交曲線E于P、Q兩點,求△F1PQ面積的最大值,并求出取最大值時直線l的方程.

解:(1)設C(x,y),則G(,).

(λ∈R),∴GM∥AB.又M是x軸上一點,則M(,0),

又∵||=||,∴(=.整理得+y2=1(x≠0).

(2)由(1),知F1(-,0),F2(,0).

設直線l的方程為x=ty+,由(1),知x≠0,∴l(xiāng)不過點(0,±1).∴t≠±.

設P(x1,y1),Q(x2,y2),將x=ty+代入x2+3y2=3,(t2+3)y2+2ty-1=0.∴Δ=8t2+4(t2+3)=12(t2+1)>0恒成立.∴y1+y2=,y1·y2=.

∴|y1-y2|===.

=|F1F2|·|y1-y2|=|y1-y2|=2(t≠±).

==.

當且僅當t2+1=2,即t=±1時取“=”.

∴△F1PQ的最大值為3,此時直線l的方程為x±y-2=0.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點G是△ABC的重心,A(0,-1),B(0,1).在x軸上有一點M,滿足|
MA
|=|
MC
|
GM
AB
(λ∈R)
(若△ABC的頂點坐標為A(x1,y1),B(x2,y2),C(x3,y3),則該三角形的重心坐標為G(
x1+x2+x3
3
,
y1+y2+y3
3
)
).
(1)求點C的軌跡E的方程.
(2)設(1)中曲線E的左、右焦點分別為F1、F2,過點F2的直線l交曲線E于P、Q兩點,求△F1PQ面積的最大值,并求出取最大值時直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點G是△ABC的重心,
AG
AB
AC
(λ,μ∈R)
,那么λ+μ=
 
;若∠A=120°,
AB
AC
=-2
,則|
AG
|
的最小值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點G是△ABC的重心,點P是△GBC內一點,若
AP
AB
AC
,則λ+μ
的取值范圍是(  )
A、(
1
2
,1)
B、(
2
3
,1)
C、(1,
3
2
)
D、(1,2)

查看答案和解析>>

科目:高中數學 來源: 題型:

(文)已知奇函數f(x)滿足f(x+3)=f(x),當x∈(0,1)時,函數f(x)=3x-1,則f(log
1
3
36)
=
 

(理)已知點G是△ABC的重心,O是空間任意一點,若
OA
+
OB
+
OC
OG
,則λ的值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列六個命題:
sin1<3sin
1
3
<5sin
1
5

②若f'(x0)=0,則函數y=f(x)在x=x0取得極值;
③“?x0∈R,使得ex0<0”的否定是:“?x∈R,均有ex≥0”;
④已知點G是△ABC的重心,過G作直線與AB,AC兩邊分別交于M,N兩點,且
AM
=x
AB
,
AN
=y
AC
,則
1
x
+
1
y
=3
;
⑤已知a=
π
0
sinxdx,
(
3
,a)
到直線
3
x-y+1=0
的距離為1;
⑥若|x+3|+|x-1|≤a2-3a,對任意的實數x恒成立,則實數a≤-1,或a≥4;
其中真命題是
①③④⑤
①③④⑤
(把你認為真命題序號都填在橫線上)

查看答案和解析>>

同步練習冊答案