設(shè)α∈(0,),函數(shù)f(x)的定義域?yàn)椋?,1],且f(0)=0,f(1)=1,當(dāng)xy時(shí),:求

(1)

的值

(2)

函數(shù)g(x)=sin(-2x)的單調(diào)遞增區(qū)間

(3)

nN時(shí),an,求f(an),并猜測x∈[0,1]時(shí),f(x)的表達(dá)式.

答案:
解析:

(1)

f()=f()=f(1)sinα+(1-sinα)f(0)=sinα,

f()=f()=f()sinα+(1-sinα)f(0)=sin2α,

f()=f()=f(1)sinα+(1-sinα)f()=2sinα-sin2α,

f()=f()=f()sinα+(1-sinα)f()=3sin2α-sin3α,

∴sinα=(3-2sinα)sin2α∴sinα=0或sinα=1或sinα=

∵α∈(0,),∴α=,因此,f()=,f()=

(2)

g(x)=sin(-2x)=sin(2x,

g(x)的增區(qū)間為[kπ-,kπ-](k∈Z).

(3)

n∈N,an

所以f(an)=f()=f(,

因此f(an)是首項(xiàng)為f(a1)=,公比為的等比數(shù)列,故f(an)=f()=,猜f(x)=x


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)φ∈(0,
π
4
)
,函數(shù)f(x)=sin2(x+φ),且f(
π
4
)=
3
4

(Ⅰ)求φ的值;
(Ⅱ)若x∈[0,
π
2
]
,求f(x)的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α∈(0,
π
2
)
,函數(shù)f(x)的定義域?yàn)閇0,1],且f(0)=0,f(1)=1,有f(
x+y
2
)
=f(x)sinα+(1-sinα)f(y),則α=
 
,f(
1
2
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0≤x≤
π2
,函數(shù)y=cos2x+2msinx的最大值是g(m),求函數(shù)g(m)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α∈(0,
π
2
)
,函數(shù)f(x)的定義域?yàn)閇0,1]且f(0)=0,f(1)=1當(dāng)x≥y時(shí)有f(
x+y
2
)=f(x)sinα+(1-sinα)f(y).
(1)求f(
1
2
),f(
1
4
);
(2)求α的值;
(3)求函數(shù)g(x)=sin(α-2x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(cosx,1-asinx),
n
=(cosx,2),設(shè)f(x)=
m
n
,且函數(shù)f(x)的最大值為g(a).
(Ⅰ)求函數(shù)g(a)的解析式.
(Ⅱ)設(shè)0≤θ≤2π,求函數(shù)(2cosθ+1)的最大值和最小值以及對應(yīng)的值.

查看答案和解析>>

同步練習(xí)冊答案