如圖,在四棱錐中,底面是邊長為的正方形,側(cè)面
底面,且,分別為、的中點.

(1)求證:平面;   
(2)求證:面平面;
(3)在線段上是否存在點,使得二面角的余弦值為?說明理由.
(1)詳見解析;(2)詳見解析;(3)線段上存在點,使得二面角的余弦值為.

試題分析:(1)連接經(jīng)過點,利用中位線得到,再由直線與平面平行的判定定理得到
平面;(2)利用平面與平面垂直的性質(zhì)定理結(jié)合側(cè)面底面得到平面,從而得到,再由勾股定理證明,結(jié)合直線與平面垂直的判定定理證明平面,最后利用平面與平面垂直的判定定理得到平面平面;(3)取的中點,連接,
利用平面與平面垂直的性質(zhì)定理證明平面,然后以點為坐標原點,、所在直線分別為軸、軸、軸建立空間直角坐標系,利用空間向量法解決題中二面角問題.
(1)證明:連接,由正方形性質(zhì)可知,相交于的中點
也為中點,中點.
所以在中,,
平面平面,
所以平面;
(2)證明:因為平面平面,平面  
為正方形,平面,所以平面
平面,所以.
,所以是等腰直角三角形,且,即.
,且、,所以.
,所以面
(3)取的中點,連接、,因為,所以
又側(cè)面底面,平面平面,所以平面.
分別為、的中點,所以
是正方形,故.
為原點,建立空間直角坐標系,
則有,,,,,
若在上存在點,使得二面角的余弦值為,連接、,
設(shè),
,,由(2)知平面的法向量為
設(shè)平面的法向量為.則,即,解得,
,得
所以,解得(舍去).
所以,線段上存在點,使得二面角的余弦值為.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(1)求證:AB1⊥面A1BD;
(2)求二面角A-A1D-B的余弦值;
(3)求點C到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體中,,的中點,的中點.
(1)求證:平面平面
(2)求證:平面;
(3)設(shè)為正方體棱上一點,給出滿足條件的點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以下說法中,正確的個數(shù)是( )
①平面內(nèi)有一條直線和平面平行,那么這兩個平面平行
②平面內(nèi)有兩條直線和平面平行,那么這兩個平面平行
③平面內(nèi)有無數(shù)條直線和平面平行,那么這兩個平面平行
④平面內(nèi)任意一條直線和平面都無公共點,那么這兩個平面平行
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面邊長為8的正方形,四條側(cè)棱長均為.點分別是棱上共面的四點,平面平面平面.
證明:
,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是兩條不同直線, 是三個不同平面,則下列正確的是( )
A.若,則
B.若,則
C.若,則
D.若,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

[2013·鄭州模擬]設(shè)α,β,γ為三個不同的平面,m,n是兩條不同的直線,在命題“α∩β=m,n?γ,且________,則m∥n”中的橫線處填入下列三組條件中的一組,使該命題為真命題.
①α∥γ,n?β;②m∥γ,n∥β;③n∥β,m?γ.
可以填入的條件有(  )
A.①或②B.②或③
C.①或③D.①或②或③

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

兩直線垂直,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正方體的棱長是,則直線間的距離為      。

查看答案和解析>>

同步練習冊答案