設(shè)函數(shù).
(1)當(dāng)時,求曲線在處的切線方程;
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對于[1,2],
[0,1],使成立,求實數(shù)的取值范圍.
(1) ;(2)遞增區(qū)間為(1,2),遞減區(qū)間為(0,1),;(3).
【解析】
試題分析:(1)將代入,分別得到,,再由點斜式得到在處的切線方程為;(2)將代入得到,從而得到遞增區(qū)間為(1,2),遞減區(qū)間為(0,1),;(3)先將題設(shè)條件轉(zhuǎn)化為在[0,1]上的最小值不大于在[1,2]上的的最小值.再得到,然后討論的范圍,又在[1,2]上最小值為.由單調(diào)性及從而得到的取值范圍為.
試題解析:(1)函數(shù)的定義域為
,
當(dāng)時,,,
,故.
所以在處的切線方程為.
(2) 當(dāng)時,.
故當(dāng)或時,;當(dāng)時,.
所以函數(shù)的遞增區(qū)間為(1,2),遞減區(qū)間為(0,1),.
(3)由(2)知,在(1,2)上為增函數(shù),
所以在[1,2]上的最小值為,
若對于[1,2],[0,1],使成立在[0,1]上的最小值不大于在[1,2]上的的最小值.
又,
當(dāng)時,在[0,1]上為增函數(shù),與題設(shè)不符.
當(dāng)時,,由及,得;
當(dāng)時,在[0,1]上為減函數(shù),及得.
綜上所述,的取值范圍為.
考點:1.導(dǎo)數(shù);2.直線的方程;3.函數(shù)的單調(diào)性與最值.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時,求曲線在處的切線方程;
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對于 [1,2], [0,1],使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三第一次質(zhì)量檢測理科數(shù)學(xué) 題型:解答題
(本小題滿分12分)設(shè)函數(shù)。
(1)當(dāng)時,求的單調(diào)區(qū)間。
(2)若在上的最大值為,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆上海市高三第一學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù)。
(1)當(dāng)時,求函數(shù)的最小值;
(2)當(dāng)時,試判斷函數(shù)的單調(diào)性,并證明。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com