【題目】函數(shù)f(x)=sin(2x+φ)(|φ|< )向左平移 個(gè)單位后是奇函數(shù),則函數(shù)f(x)在[0, ]上的最小值為
【答案】-
【解析】解:把函數(shù)y=sin(2x+φ)的圖象向左平移 個(gè)單位得到函數(shù)y=sin(2x+ +φ)的圖象,
∵函數(shù)y=sin(2x+ +φ)為奇函數(shù),故 +φ=kπ,
∵|φ|< ,故φ的最小值是﹣ .
∴函數(shù)為y=sin(2x﹣ ).x∈[0, ],
∴2x﹣ ∈[﹣ , ],
x=0時(shí),函數(shù)取得最小值為﹣ .
所以答案是:﹣ .
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,則CD與平面BDC1所成角的正弦值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:三棱錐P﹣ABC中,PA⊥底面ABC,若底面ABC是邊長(zhǎng)為2的正三角形,且PB與底面ABC所成的角為 .若M是BC的中點(diǎn),求:
(1)三棱錐P﹣ABC的體積;
(2)異面直線PM與AC所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=3,a2=5,{an}的前n項(xiàng)和Sn , 且滿足Sn+Sn﹣2=2Sn﹣1+2n﹣1(n≥3).
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn< ;
(3)證明:對(duì)任意給定的m∈(0, ),均存在n0∈N+ , 使得當(dāng)n≥n0時(shí),(2)中的Tn>m恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題共13分)
如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直。
EF//AC,AB=,CE=EF=1
(Ⅰ)求證:AF//平面BDE;
(Ⅱ)求證:CF⊥平面BDF;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣ax﹣3(a≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)+(a+1)x+4﹣e≤0對(duì)任意x∈[e,e2]恒成立,求實(shí)數(shù)a的取值范圍(e為自然常數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,且,,平面底面,為的中點(diǎn), 是棱的中點(diǎn), ,.
(1)求證:平面BDM; (2)D到面PBC距離;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}是等差數(shù)列,若 <﹣1,且它的前n項(xiàng)和Sn有最大值,那么當(dāng)Sn取的最小正值時(shí),n=( )
A.11
B.17
C.19
D.21
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|.
(1)若不等式f(x+ )≥2m+1(m>0)的解集為(﹣∞,﹣2]∪[2,+∞),求實(shí)數(shù)m的值;
(2)若不等式f(x)≤2y+ +|2x+3|,對(duì)任意的實(shí)數(shù)x,y∈R恒成立,求實(shí)數(shù)a的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com