【題目】已知數(shù)列{an}滿足an+1=an﹣2an+1an , an≠0且a1=1
(1)求證:數(shù)列 是等差數(shù)列,并求出{an}的通項公式;
(2)令 ,求數(shù)列{bn}的前2n項的和T2n

【答案】
(1)證明:∵an+1=an﹣2an+1an,an≠0且a1=1,∴ =2,

∴數(shù)列 是等差數(shù)列,首項為1,等差數(shù)列為2.

=1+2(n﹣1)=2n﹣1,解得an=


(2)解: =(﹣1)n1 =(﹣1)n1 ,

∴T2n= +…+

= =


【解析】(1)由an+1=an﹣2an+1an , an≠0且a1=1,取倒數(shù)可得 =2,即可得出.(2) =(﹣1)n1 =(﹣1)n1 ,利用“裂項求和”即可得出.
【考點精析】關于本題考查的數(shù)列的前n項和和數(shù)列的通項公式,需要了解數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司在2012﹣2016年的收入與支出情況如表所示:

收入x(億元)

2.2

2.6

4.0

5.3

5.9

支出y(億元)

0.2

1.5

2.0

2.5

3.8

根據(jù)表中數(shù)據(jù)可得回歸直線方程為 =0.8x+ ,依次估計如果2017年該公司收入為7億元時的支出為(
A.4.5億元
B.4.4億元
C.4.3億元
D.4.2億元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且
(1)求sinB的值;
(2)若a=4,求△ABC的面積S的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=4x,焦點為F,過點P(﹣1,0)作斜率為k(k>0)的直線l與拋物線C交于A,B兩點,直線AF,BF分別交拋物線C于M,N兩點,若 + =18,則k=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣t|(t∈R)
(1)t=2時,求不等式f(x)>2的解集;
(2)若對于任意的t∈[1,2],x∈[﹣1,3],f(x)≥a+x恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,圓C的方程為ρ=6sinθ
(1)求圓C的直角坐標方程;
(2)若點P(1,2),設圓C與直線l交于點A、B,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{xn}的前n項和為Sn , 且4xn﹣Sn﹣3=0(n∈N*);
(1)求數(shù)列{xn}的通項公式;
(2)若數(shù)列{yn}滿足yn+1﹣yn=xn(n∈N*),且y1=2,求滿足不等式 的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設m>1,在約束條件 下,目標函數(shù)z=x+my的最大值小于2,則m的取值范圍為(
A.(1,
B.( ,+∞)
C.(1,3)
D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)經(jīng)過點 ,離心率為 ,O為坐標原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點P為橢圓C上一動點,點A(3,0)與點P的垂直平分線交y軸于點B,求|OB|的最小值.

查看答案和解析>>

同步練習冊答案