在區(qū)間(1,+∞)上不是增函數(shù)的是

[  ]
A.

y=-

B.

y=+2

C.

y=-x2+2x+1

D.

y=1+x2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導(dǎo)函數(shù)y=h′(x)的圖象如圖,f(x)=6lnx+h(x).
(1)求函數(shù)f(x)在x=3處的切線(xiàn)斜率;
(2)若函數(shù)f(x)在區(qū)間(1,m+
12
)
上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)y=-x,x∈(0,6]的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(1)當(dāng)a=1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(1,f (1))處的切線(xiàn)方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e)上的最小值為-2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù),f(x)=|x-m|在區(qū)間[1,2)上為單調(diào)函數(shù),則m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是定義在R上的函數(shù),對(duì)于任意的x∈R,f(-x)+f(x)=0,且當(dāng)x≥0 時(shí),f(x)=2x-x2
(1)求y=f(x)的解析式;
(2)畫(huà)出函數(shù)y=f(x)的圖象,并指出f(x)的單調(diào)區(qū)間及在每個(gè)區(qū)間上的增減性;
(3)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)y=f(x),若f(2x)=af(x)+b(a,b∈R )恒成立,則稱(chēng)(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,f(1)=3,且當(dāng)x∈[1,2)時(shí),f(x)=k-|2x-3|,關(guān)于函數(shù)f(x)有以下三個(gè)判斷:
①k=4;  ②f(x)在區(qū)間[1,2)上的值域是[3,4];  ③f(8)=-24.
則正確判斷的所有序號(hào)是
①②③
①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案