(選修4-5:不等式選講)
(1)設(shè)a,b是非負(fù)實(shí)數(shù),求證:a2+b2
ab
(a+b)

(2)求函數(shù)y=3
x-5
+4
6-x
的最大值.
分析:(1)利用作差法,結(jié)合配方法可得結(jié)論;
(2)函數(shù)的定義域?yàn)閇5,6],由柯西不等式可得結(jié)論.
解答:解:(1)a2+b2-
ab
(a+b)
=(a+b)2-
ab
(a+b)-2ab
=(
a
-
b
)2(a+b+
ab
)

∵a,b是非負(fù)實(shí)數(shù),∴(
a
-
b
)2(a+b+
ab
)
≥0,
∴a2+b2
ab
(a+b)

(2)函數(shù)的定義域?yàn)閇5,6],由柯西不等式可得y=3
x-5
+4
6-x

32+42
×
(
x-5
)2+(
6-x
)2
=5,
∴ymax=5…(10分)
點(diǎn)評(píng):本題考查不等式的證明,考查學(xué)生分析解決問(wèn)題的能力,正確運(yùn)用柯西不等式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-5:不等式選講)
已知a,b,c∈R+,且
1
a
+
2
b
+
3
c
≤|x|+|x-2|對(duì)?x∈R恒成立,求a+2b+3c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講:
已知a、b、c是正實(shí)數(shù),求證:
a2
b2
+
b2
c2
+
c2
a2
b
a
+
c
b
+
a
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)選修4-5:不等式選講
已知a>0,b>0,n∈N*.求證:
an+1+bn+1
an+bn
ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐州模擬)[選修4-5:不等式選講]
已知a,b,c為正數(shù),且滿足acos2θ+bsin2θ<c,求證:
a
cos2θ+
b
sin2θ<
c

查看答案和解析>>

同步練習(xí)冊(cè)答案