【題目】如圖所示,在四棱臺中, 底面,四邊形為菱形, , .

(Ⅰ)若中點,求證: 平面

(Ⅱ)求直線與平面所成角的正弦值.

【答案】(1)詳見解析;(2.

【解析】(Ⅰ)要證直線與平面垂直,現(xiàn)在由與底面垂直有,因此還要證一個垂直,證,這可通過等邊三角形得證,從而有需要的結(jié)論,因此證得線面垂直;

(Ⅱ)要求直線與平面所成的角,分別以軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系 、、 ,求出平面的法向量,由直線的方向向量與平面法向量夾角得線面角.

試題解析:(Ⅰ) 四邊形為菱形, ,連結(jié),則為等邊三角形,

中點, ,由 得, ,

底面 底面, ,又 ,

平面

(Ⅱ)四邊形為菱形, , ,

, , ,又底面,

分別以軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系

、、、 ,

, , ,

設(shè)平面的一個法向量 ,

則有,令,則

直線與平面所成角的正弦值

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子商務(wù)公司對10 000名網(wǎng)絡(luò)購物者2017年度的消費情況進行統(tǒng)計,發(fā)現(xiàn)消費金額(單位:萬元)都在區(qū)間[0.3,0.9]內(nèi),其頻率分布直方圖如圖所示.

(1)直方圖中的a=_____;

(2)在這些購物者中,消費金額在區(qū)間[0.5,0.9]內(nèi)的購物者的人數(shù)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;

(2)當(dāng)時,設(shè)函數(shù).若存在區(qū)間,使得函數(shù)上的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.

(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;

(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍;

(3)若為定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果從不包括大小王的52張撲克牌中隨機抽取一張那么取到紅心(事件A)的概率是,取到方塊(事件B)的概率是,問:

(1)取到紅色牌(事件C)的概率是多少?

(2)取到黑色牌(事件D)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了估計某自然保護區(qū)中天鵝的數(shù)量,可以使用以下方法:先從該保護區(qū)中捕出一定數(shù)量的天鵝,例如200只,給每只天鵝做上不影響其存活的記號,然后放回保護區(qū),經(jīng)過適當(dāng)?shù)臅r間,讓其和保護區(qū)中其余的天鵝充分混合,再從保護區(qū)中捕出一定數(shù)量的天鵝,例如150只,查看其中有記號的天鵝,設(shè)有20只,試根據(jù)上述數(shù)據(jù),估計該自然保護區(qū)中天鵝的數(shù)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn), 兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)類產(chǎn)品5件和類產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)類產(chǎn)品6件和類產(chǎn)品20件.已知設(shè)備甲每天的租賃費為300元,設(shè)備乙每天的租賃費為400元,現(xiàn)該公司至少要生產(chǎn)類產(chǎn)品50件, 類產(chǎn)品140件,則所需租賃費最少為__________元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】媒體為調(diào)查喜歡娛樂節(jié)目是否與性格外向有關(guān),隨機抽取了400名性格外向的和400名性格內(nèi)向的居民,抽查結(jié)果用等高條形圖表示如下圖:

(1)填寫完整如下列聯(lián)表;

(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.001的前提下認為喜歡娛樂節(jié)目與性格外向有關(guān)?

參考數(shù)據(jù)及公式:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),( ).

(Ⅰ)若有最值,求實數(shù)的取值范圍;

(Ⅱ)當(dāng)時,若存在、),使得曲線處的切線互相平行,求證: .

查看答案和解析>>

同步練習(xí)冊答案